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Etale spaces and (pre)sheaves

E

l"

X “ Open(X)°P — Set
Etale spaces over X Sheaves on X

In both these situations, there is a duality between spaces varying
nicely over X and sets indexed ‘by X'.
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Fibrations and indexed categories

Theorem (Grothendieck, 1964)

Let B be a category. There is a 2-equivalence

Fib(B) = 2-Fun(B°?, Cat)

E

I

B ~ B°P — Cat
Fibrations over B Categories indexed by B

Goal: An enriched version of this result.
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Definition (Grothendieck 1959)
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f: b — pe in B, there exists a cartesian lift of f with codomain e.
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Example 1: Pullbacks

For any category C, let Arr(C) be the category of arrows in C.

C—— z

7, ]

x ——y Arr(C)
J’cod

X%y C

cod is a fibration <= C has pullbacks

So instead of a category with pullbacks, a fibration is like a functor
‘with pullbacks'.
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Example 2: the global module category

Mod is the category of pairs (M, R) where M € Modg.

Mod

Ring

p is a fibration: f* is restriction of scalars
p is also an opfibration: f; is extension of scalars (— ®g S)
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Example 3: the global comodule category

Comod(V): pairs (M, C) where M € Comodc, for C a comonoid.

Comod(V)

Comon())

p is an opfibration: f is corestriction of scalars
p is a fibration: * is coextension of scalars (given by cotensoring)
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Enriched categories

Capture the idea of a category whose homs C(x, y) have extra
structure i.e. belong to a monoidal category (V,®,1).

® 1 % V-categories
X {x} Set categories
Cat strict 2-categories
sSet simplicial categories
Rk k Vect, k-linear categories
Chr differential graded categories

Also, monoids in V are V-categories with one object:

G a monoid,

C(*,%) =G



Enriched Cats
oeo

Underlying categories and free V-categories

Unfortunately, we may not access individual morphisms in a
V-category, since C(x, y) is no longer a set.
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Underlying categories and free V-categories

Unfortunately, we may not access individual morphisms in a
V-category, since C(x, y) is no longer a set.

But every V-category C has an underlying category Cy:
o ff °C Co = V-Cat(e,()

Conversely, there is often a free V-category Cy on a category C,
with the same objects and

Cy(b, c) := ]_[ 1

fEC(b,c)
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Enriched Cats
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Underlying categories and free V-categories

One-object example when V = Vecty:

CV (CV)O

G k[G]= & k k[G] as a monoid
geaG

Note: C # (Cy)o, but we do have C — (Cy)o.

The maps C — (Cy)p form the unit of the adjunction:

(v
Cat __ 1 * V-Cat
(=)o
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Enriched fibrations

How can we define fibrations of enriched categories?

Apply Street's definition of fibration in a 2-category to V-Cat:

Definition

p: £ — Bis a fibration if i: £ < B/p has a right adjoint over 5.

E L 2 Bl
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Enriched Fibs
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Motivating the definition: Fibers

Fibers are given by pullback:

Ee

|-

Given b 1> ¢, want a functor &, LA Ep, but we can’t get this from
the universal property of pullbacks.

@(*("Q
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Motivating the definition: Comma categories

Instead of pullbacks, need comma objects:

c/p — €&

ic

Ec — c/p o bip - &

But what we want is a functor between fibers.
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Enriched Fibs
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Motivating the definition

These requirements are satisfied by the defining adjunction:

Applied to the 2-category Cat, we recover the classical definition.
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The inverse Grothendieck construction

We have seen all the ingredients for:

Proposition (Beardsley-W.)

Let B be a V-category. There is a 2-functor

V-Fib(B) — 2-Fun(B,°?, V-Cat).

e fir ° B By = V-Cat(e, B)
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The inverse Grothendieck construction

We have seen all the ingredients for:

Proposition (Beardsley-W.)

Let B be a V-category. There is a 2-functor

V-Fib(B) — 2-Fun(B,°?, V-Cat).

e fir ° B By = V-Cat(e, B)

More generally, for a suitable 2-category K, we should have
Fibx(B) — 2-Fun(B;", K),

where By := K(e, B).
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Proposition (Beardsley-W.)

Suppose the unit 1 € V is terminal, and pullbacks preserve
coproducts in V. Let B be a category. There is 2-functor

V-Fib(By) + 2-Fun(B°,V-Cat).
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Enriched Grothendieck Correspondence?

V-Fib(B) — 2-Fun(,°P, V-Cat)
V-Fib(By) <+ 2-Fun(B°?V-Cat)
Are they inverses when B = By?7 Not as stated, because
B # (Bv)o
But we can precompose with B — (By)o:
B% — (By)g” — V-Cat

Theorem (Beardsley-W.)

Suppose the unit 1 € V is terminal, and pullbacks preserve
coproducts in V. Let B be a category. There is a 2-equivalence

V-Fib(By) = 2-Fun(B%, V-Cat).
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What if 1 is not terminal? e.g. V = Vect,

Every comonoid has counit C — 1, so maybe enrich over
Comon(V) instead? But this would be a statement about
B-indexed Comon(V)-categories B°? — Comon())-Cat.

Can’t we say more about B-indexed V-categories B°? — V-Cat?
Where does the Grothendieck construction land?
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Another perspective

Set-Fib(Bset) = 2-Fun(B°P, Set-Cat). J

Comon(Set) = Set!
Maybe substitute some Sets by V' and others by Comon(V):

‘CoactFib’(V)(Bcomon(y)) = 2-Fun(B°,V-Cat)? J

Theorem (Cohen & Montgomery 1984,. .., Tamaki 2009)

G-coactions (‘fibrations’ over G) <+ G-actions

Can we make this precise? What should CoactFib be?
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|dea (Tamaki 2009)

We may not have maps V — 1, but every V has a coaction by 1:
v vel

More generally, instead of maps V — C, where C is a comonoid,
we can ask for coactions

V- VC.

When ® = X, coactions correspond to maps V — C, so coactions
are ‘generalized maps’'. <— Can't always be composed!
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The comodule bifibration

@ Arbitrary coactions can't be composed
@ Coactions arising from comonoid maps can be composed

@ Comodule maps can be composed, but are not coactions

What framework handles all these? The comodule bifibration!

(M,C) —— (N, D) Comod(V)
E —_— B Comon(V)

Cotensoring acts like pullback against a coaction, so this behaves
like a category with pullbacks.
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Comod(V-Cat) — Comon(V-Cat)

Comon(V-Cat) = Comon(V)-Cat, but Comod(V-Cat) # Comod(V)-Cat.
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The comodule bifibration, categorified

Going up a dimension, we get:
Comod(V-Cat) — Comon(V-Cat)

In addition to ‘pullbacks’, this has ‘comma objects’:

flo
flo — E J\‘E
/f o =
i P
A—— B

So we can define ‘fibrations’!

Comon(V-Cat) = Comon(V)-Cat, but Comod(V-Cat) # Comod(V)-Cat.
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Fibrations ‘in' a 2-functor

For a 2-functor P: M — K admitting ‘pullbacks’ and ‘commas’,
we may define the category P-Fib of P-fibrations.

Proposition? (W.)

For suitable V, there are 2-functors

P-Fib(By) < 2-Fun(B%, V-Cat),

where P: Comod(V-Cat) — Comon(V-Cat).

However, this is unlikely to be an equivalence:
Full comonoid structure is too much, we only need the counit.
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+ o+ o+

Monoidal
Projections
Diagonals
Cocommutative

Cartesian

v
Aug(V)=V/1
Comon(V)
Comon(Comon()))
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A cartesian heirarchy

Monoidal 1%
+ Projections Aug(V)=V/1
+ Diagonals Comon(V)
+ Cocommutative Comon(Comon(V))
= Cartesian

Do we get equivalence if P: Augmod(V-Cat) — Aug(V-Cat)?

What other results are secretly about comonoids/comodules?




Thank you!

Questions/comments?
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