Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon

Enriched Fibrations and Comodule Categories

Liang Ze Wong

University of Washington, Seattle

8 Mar 2018

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		0000000
Covering	maps			

Fibrations 000000	Enriched Cats	Enriched Fibs 0000	Grothendieck Construction	Comod/Comon 0000000
Covering	maps			

• paths in B lift to paths in E

overing mans	0000	000000
overing maps		

- paths in B lift to paths in E
- induces map between fibers

$$E_c \xrightarrow{\gamma^*} E_b$$

overing mans	0000	000000
overing maps		

- paths in B lift to paths in E
- induces map between fibers

$$E_c \xrightarrow{\gamma^*} E_b$$

• $\pi_1(B, b)$ acts on E_b

- paths in B lift to paths in E
- induces map between fibers

$$E_c \xrightarrow{\gamma^*} E_b$$

- $\pi_1(B, b)$ acts on E_b
- $\pi_1(B)$ acts on fibers

 $\pi_1(B)^{op} \to \mathbf{Set}$

Étale spaces over X

Sheaves on X

Étale spaces over X Sheaves on X

In both these situations, there is a duality between spaces varying nicely over X and sets indexed 'by X'.

Theorem (Grothendieck, 1964)

Let B be a category. There is a 2-equivalence

 $Fib(B) \cong 2$ -Fun (B^{op}, Cat)

Fibrations over B

Categories indexed by B

Theorem (Grothendieck, 1964)

Let B be a category. There is a 2-equivalence

 $Fib(B) \cong 2$ -Fun (B^{op}, Cat)

Fibrations over *B* Categories indexed by *B*

Goal: An enriched version of this result.

Outline				
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		0000000

- 3 Enriched Fibrations (Fibrations in a 2-Cat)
- 4 The Enriched Grothendieck Construction
- 5 Comonoid/Comodule Categories and Fibrations

$O_{\rm utline}$	000	0000	000	0000000
Outline				

- 2 Enriched Categories
- 3 Enriched Fibrations (Fibrations in a 2-Cat)
- 4 The Enriched Grothendieck Construction
- 5 Comonoid/Comodule Categories and Fibrations

Grothendieck fibrations							
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon			
●00000	000	0000		0000000			

Grothendieck fibrations							
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon			
●00000	000	0000		0000000			

Grothendieck fibrations							
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon			
●00000	000	0000		0000000			

Grothendieck fibrations							
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon			
●00000	000	0000		0000000			

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
0●0000	000	0000		0000000
Example :	1: Pullbacks			

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
0●0000	000	0000		0000000
Example	1: Pullbacks	;		

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
0●0000	000	0000		0000000
Example	1: Pullbacks			

cod is a fibration $\iff C$ has pullbacks

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
0●0000	000	0000		0000000
Example	1: Pullbacks			

cod is a fibration $\iff C$ has pullbacks

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
0●0000	000	0000		0000000
Example 2	1: Pullbacks			

cod is a fibration $\iff C$ has pullbacks

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
0●0000	000	0000		0000000
Example 3	1: Pullbacks			

cod is a fibration \iff C has pullbacks

So instead of a *category* with pullbacks, a fibration is like a *functor* 'with pullbacks'.

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		0000000
Fibers of	a fibration			

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		0000000
Fibers of	a fibration			

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
00000	000	0000		0000000
Fibers of	a fibration			

p is a fibration: f^* is restriction of scalars

p is a fibration: f^* is restriction of scalars *p* is also an *op*fibration: f_1 is extension of scalars $(- \otimes_R S)$

Comod(\mathcal{V}): pairs (M, C) where $M \in$ **Comod**_C, for C a comonoid.

Fibrations Enriched Cats Enriched Fibs Grothendieck Construction Comod/Comod 000000 000 000 000 000 0000000

Example 3: the global *co*module category

Comod(\mathcal{V}): pairs (M, C) where $M \in$ **Comod**_C, for C a comonoid.

Fibrations Enriched Cats Enriched Fibs Grothendieck Construction Comod/Comod 000000 000 000 000 000 000000

Example 3: the global *co*module category

Comod(\mathcal{V}): pairs (M, C) where $M \in$ **Comod**_C, for C a comonoid.

p is an opfibration: f_1 is corestriction of scalars p is a fibration: f^* is coextension of scalars (given by cotensoring)

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
00000●	000	0000		0000000
The Grot	hendieck cor	struction		

Theorem (Grothendieck 1964)

$Fib(B) \cong 2$ -Fun (B^{op}, Cat)

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
00000●	000	0000		0000000
The Grot	hendieck cor	struction		

Theorem (Grothendieck 1964)

$Fib(B) \cong 2$ -Fun (B^{op}, Cat)

Theorem (Grothendieck 1964)

$Fib(B) \cong 2$ -Fun (B^{op}, Cat)

Theorem (Grothendieck 1964)

$Fib(B) \cong 2$ -Fun (B^{op}, Cat)

Theorem (Grothendieck 1964)

$Fib(B) \cong 2$ -Fun (B^{op}, Cat)

000000	000	0000	000	0000000
Outline				

2 Enriched Categories

- 3 Enriched Fibrations (Fibrations in a 2-Cat)
- 4 The Enriched Grothendieck Construction
- 5 Comonoid/Comodule Categories and Fibrations

Enriched	categories			
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	●00	0000		0000000

Capture the idea of a category whose homs C(x, y) have extra structure i.e. belong to a monoidal category $(\mathcal{V}, \otimes, \mathbf{1})$.

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	●00	0000		0000000
Enriched	categories			

Capture the idea of a category whose homs C(x, y) have extra structure i.e. belong to a monoidal category $(\mathcal{V}, \otimes, \mathbf{1})$.

\otimes	1	\mathcal{V}	\mathcal{V} -categories
Х	{*}	Set	categories
		Cat	strict 2-categories
		sSet	simplicial categories
\otimes_{k}	k	\mathbf{Vect}_k	k-linear categories
		\mathbf{Ch}_R	differential graded categories

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	●00	0000		0000000
Enriched	categories			

Capture the idea of a category whose homs C(x, y) have extra structure i.e. belong to a monoidal category $(\mathcal{V}, \otimes, \mathbf{1})$.

\otimes	1	\mathcal{V}	\mathcal{V} -categories
×	{*}	Set	categories
		Cat	strict 2-categories
		sSet	simplicial categories
\otimes_{k}	k	\mathbf{Vect}_k	k-linear categories
		\mathbf{Ch}_R	differential graded categories

Also, monoids in ${\mathcal V}$ are ${\mathcal V}\text{-categories}$ with one object:

 $G \text{ a monoid}, \qquad \mathcal{C}(*,*) = G$

Unfortunately, we may not access individual morphisms in a \mathcal{V} -category, since $\mathcal{C}(x, y)$ is no longer a *set*.

Unfortunately, we may not access individual morphisms in a \mathcal{V} -category, since $\mathcal{C}(x, y)$ is no longer a *set*.

But every \mathcal{V} -category \mathcal{C} has an **underlying category** \mathcal{C}_0 :

Unfortunately, we may not access individual morphisms in a \mathcal{V} -category, since $\mathcal{C}(x, y)$ is no longer a *set*.

But every \mathcal{V} -category \mathcal{C} has an **underlying category** \mathcal{C}_0 :

Conversely, there is often a **free** V-**category** C_V on a category C, with the same objects and

$$C_{\mathcal{V}}(b,c) := \prod_{f \in C(b,c)} \mathbf{1}$$

$$\begin{array}{c|c} C & C_{\mathcal{V}} & (C_{\mathcal{V}})_0 \\ \hline G & \end{array}$$

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	00●	0000		0000000
Underlying	g categories	and free	$\mathcal V$ -categories	

$$\frac{C}{G} \qquad C_{\mathcal{V}} \qquad (C_{\mathcal{V}})_0$$

$$\frac{C}{G} \qquad k[G] = \bigoplus_{g \in G} k$$

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	00●	0000		0000000
Underlying	g categories	and free	$\mathcal V$ -categories	

$$C \qquad C_{\mathcal{V}} \qquad (C_{\mathcal{V}})_0$$

$$G \qquad k[G] = \bigoplus_{g \in G} k \qquad k[G] \text{ as a monoid}$$

$$C \qquad C_{\mathcal{V}} \qquad (C_{\mathcal{V}})_0$$

$$G \qquad k[G] = \bigoplus_{g \in G} k \qquad k[G] \text{ as a monoid}$$

Note: $C \neq (C_{\mathcal{V}})_0$, but we do have $C \rightarrow (C_{\mathcal{V}})_0$.

$$\begin{array}{ccc} C & C_{\mathcal{V}} & (C_{\mathcal{V}})_0 \\ \hline G & k[G] = \bigoplus_{g \in G} k & k[G] \text{ as a monoid} \end{array}$$

Note: $C \neq (C_{\mathcal{V}})_0$, but we do have $C \rightarrow (C_{\mathcal{V}})_0$.

The maps $C \to (C_{\mathcal{V}})_0$ form the unit of the adjunction:

Fibrations 000000	Enriched Cats	OCCO FIDS	Grothendleck Construction	0000000
Outline				

- 3 Enriched Fibrations (Fibrations in a 2-Cat)
- 4 The Enriched Grothendieck Construction
- 5 Comonoid/Comodule Categories and Fibrations

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	●000		0000000
Enriched	fibrations			

How can we define fibrations of enriched categories?

Enriched	fibrations			
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	●000		0000000

How can we define fibrations of enriched categories?

Apply Street's definition of fibration in a 2-category to \mathcal{V} -Cat:

Definition

 $p: \mathcal{E} \to \mathcal{B}$ is a **fibration** if $i: \mathcal{E} \hookrightarrow \mathcal{B}/p$ has a right adjoint over \mathcal{B} .

Motivo	ting the defi	nition: Eihor	rc	
Fibrations 000000	Enriched Cats	Enriched Fibs 0●00	Grothendieck Construction	Comod/Comon 0000000

Fibers are given by pullback:

6

Fibers are given by pullback:

Given $b \xrightarrow{f} c$, want a functor $\mathcal{E}_c \xrightarrow{f^*} \mathcal{E}_b$,

Fibers are given by pullback:

Given $b \xrightarrow{f} c$, want a functor $\mathcal{E}_c \xrightarrow{f^*} \mathcal{E}_b$, but we can't get this from the universal property of pullbacks.

By the universal property of b/p, the composite 2-cell induces:

$$c/p \stackrel{f^{\circ}}{\longrightarrow} b/p$$

By the universal property of b/p, the composite 2-cell induces:

$$\mathcal{E}_c \qquad c/p \stackrel{f^\circ}{\longrightarrow} b/p \qquad \mathcal{E}_b$$

But what we want is a functor between fibers.

By the universal property of b/p, the composite 2-cell induces:

$$\mathcal{E}_{c} \xrightarrow{i_{c}} c/p \xrightarrow{f^{\circ}} b/p \qquad \mathcal{E}_{b}$$

But what we want is a functor between fibers.

By the universal property of b/p, the composite 2-cell induces:

$$\mathcal{E}_{c} \xrightarrow{i_{c}} c/p \xrightarrow{f^{\circ}} b/p \xrightarrow{-r_{c}} \mathcal{E}_{b}$$

But what we want is a functor between fibers.

Motivating the definition						
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon		
000000	000	000●		0000000		

Motivating the definition						
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon		
000000	000	000●		0000000		

Motivating the definition						
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon		
000000	000	000●		0000000		

Motivating the definition						
Fibrations 000000	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon 0000000		

Applied to the 2-category Cat, we recover the classical definition.

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		0000000
Outline				

- 2 Enriched Categories
- 3 Enriched Fibrations (Fibrations in a 2-Cat)
- 4 The Enriched Grothendieck Construction
- 5 Comonoid/Comodule Categories and Fibrations

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000	●00	0000000
The inver-	se Grothend	ieck constru	ction	

We have seen all the ingredients for:

Proposition (Beardsley-W.)

Let \mathcal{B} be a \mathcal{V} -category. There is a 2-functor

 $\mathcal{V}\text{-}\mathsf{Fib}(\mathcal{B}) \to 2\text{-}\mathsf{Fun}(\mathcal{B}_0^{op}, \mathcal{V}\text{-}\mathsf{Cat}).$

 Fibrations
 Enriched Cats
 Enriched Fibs
 Grothendieck Construction
 Comod/Comon

 00000
 0000
 0000
 0000
 0000000

We have seen all the ingredients for:

Proposition (Beardsley-W.)

Let \mathcal{B} be a \mathcal{V} -category. There is a 2-functor

 \mathcal{V} -Fib(\mathcal{B}) \rightarrow 2-Fun($\mathcal{B}_0^{op}, \mathcal{V}$ -Cat).

•
$$(f f) \mathcal{B}$$
 $\mathcal{B}_0 = \mathcal{V}\text{-}\mathsf{Cat}(\bullet, \mathcal{B})$

More generally, for a suitable 2-category \mathcal{K} , we should have

$$\operatorname{Fib}_{\mathcal{K}}(\mathcal{B}) \to 2\operatorname{-Fun}(\mathcal{B}_0^{op},\mathcal{K}),$$

where $\mathcal{B}_0 := \mathcal{K}(\bullet, \mathcal{B})$.

Fibrations 000000	Enriched Cats	Enriched Fibs 0000	Grothendieck Construction	Comod/Comon 0000000
The Gro	thendieck c	onstruction		

Proposition (Beardsley-W.)

Suppose the unit $1 \in V$ is terminal, and pullbacks preserve coproducts in V. Let B be a category. There is 2-functor

 \mathcal{V} -Fib $(\mathcal{B}_{\mathcal{V}}) \leftarrow 2$ -Fun $(\mathcal{B}^{op}, \mathcal{V}$ -Cat).

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		0000000
The Grot	hendieck c	onstruction		

Proposition (Beardsley-W.)

Suppose the unit $\mathbf{1} \in \mathcal{V}$ is terminal, and pullbacks preserve coproducts in \mathcal{V} . Let B be a category. There is 2-functor

 \mathcal{V} -Fib $(\mathcal{B}_{\mathcal{V}}) \leftarrow 2$ -Fun $(\mathcal{B}^{op}, \mathcal{V}$ -Cat).

For $F: B^{op} \to \mathcal{V}$ -**Cat**, piece together *Fb* into a category \mathcal{E} :

$$egin{aligned} \mathsf{Ob}(\mathcal{E}) &:= & \coprod_{b \in B} & \mathsf{Ob}(Fb) \ \mathcal{E}(e_1, e_2) &:= & \coprod_{f \in B(b_1, b_2)} Fb_1(e_1, Ff \ e_2) \ \mathcal{B}_\mathcal{V}(b_1, b_2) &:= & \coprod_{f \in B(b_1, b_2)} & \mathbf{1} \end{aligned}$$

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		0000000
The Grot	hendieck c	onstruction		

Proposition (Beardsley-W.)

Suppose the unit $\mathbf{1} \in \mathcal{V}$ is terminal, and pullbacks preserve coproducts in \mathcal{V} . Let B be a category. There is 2-functor

 \mathcal{V} -Fib $(\mathcal{B}_{\mathcal{V}}) \leftarrow 2$ -Fun $(\mathcal{B}^{op}, \mathcal{V}$ -Cat).

For $F: B^{op} \to \mathcal{V}$ -**Cat**, piece together *Fb* into a category \mathcal{E} :

$$egin{aligned} \mathsf{Ob}(\mathcal{E}) &:= & \coprod_{b \in B} & \mathsf{Ob}(Fb) \ \mathcal{E}(e_1, e_2) &:= & \coprod_{f \in B(b_1, b_2)} Fb_1(e_1, Ff \ e_2) \ \mathcal{B}_\mathcal{V}(b_1, b_2) &:= & \coprod_{f \in B(b_1, b_2)} & \mathbf{1} \end{aligned}$$
Fibrations
 Enriched Cats
 Enriched Fibs
 Grothendieck Construction
 Comod/Comon

 Construction
 Coo
 Coo
 Coo
 Coo
 Coo

 Enriched
 Grothendieck
 Correspondence?
 Coo
 Coo
 Coo

 $\mathcal{V} ext{-Fib}(\mathcal{B}) \to 2 ext{-Fun}(\mathcal{B}_0^{op}, \mathcal{V} ext{-Cat})$ $\mathcal{V} ext{-Fib}(\mathcal{B}_{\mathcal{V}}) \leftarrow 2 ext{-Fun}(\mathcal{B}^{op}, \mathcal{V} ext{-Cat})$

 $\mathcal{V} ext{-Fib}(\mathcal{B}) \to 2 ext{-Fun}(\mathcal{B}_0^{op}, \mathcal{V} ext{-Cat})$ $\mathcal{V} ext{-Fib}(\mathcal{B}_{\mathcal{V}}) \leftarrow 2 ext{-Fun}(\mathcal{B}^{op}, \mathcal{V} ext{-Cat})$

Are they inverses when $\mathcal{B} = B_{\mathcal{V}}$?

 $\mathcal{V} ext{-Fib}(\mathcal{B}) o 2 ext{-Fun}(\mathcal{B}_0^{op}, \mathcal{V} ext{-Cat})$ $\mathcal{V} ext{-Fib}(\mathcal{B}_{\mathcal{V}}) \leftarrow 2 ext{-Fun}(\mathcal{B}^{op}, \mathcal{V} ext{-Cat})$

Are they inverses when $\mathcal{B} = B_{\mathcal{V}}$? Not as stated, because

 $B
eq (B_{\mathcal{V}})_0$

$$\mathcal{V} ext{-Fib}(\mathcal{B}) \to 2 ext{-Fun}(\mathcal{B}_0^{op}, \mathcal{V} ext{-Cat})$$

 $\mathcal{V} ext{-Fib}(\mathcal{B}_{\mathcal{V}}) \leftarrow 2 ext{-Fun}(\mathcal{B}^{op}, \mathcal{V} ext{-Cat})$

Are they inverses when $\mathcal{B} = B_{\mathcal{V}}$? Not as stated, because

 $B \neq (B_{\mathcal{V}})_0$

But we can precompose with $B \to (B_{\mathcal{V}})_0$:

 $B^{\textit{op}}
ightarrow (B_{\mathcal{V}})_0^{\textit{op}}
ightarrow \mathcal{V} ext{-}\mathbf{Cat}$

 $\mathcal{V} ext{-Fib}(\mathcal{B}) \to 2 ext{-Fun}(\mathcal{B}_0^{op}, \mathcal{V} ext{-Cat})$ $\mathcal{V} ext{-Fib}(\mathcal{B}_{\mathcal{V}}) \leftarrow 2 ext{-Fun}(\mathcal{B}^{op}, \mathcal{V} ext{-Cat})$

Are they inverses when $\mathcal{B} = B_{\mathcal{V}}$? Not as stated, because

 $B \neq (B_{\mathcal{V}})_0$

But we can precompose with $B \to (B_{\mathcal{V}})_0$:

$$B^{op}
ightarrow (B_{\mathcal{V}})^{op}_0
ightarrow \mathcal{V}$$
-Cat

Theorem (Beardsley-W.)

Suppose the unit $\mathbf{1} \in \mathcal{V}$ is terminal, and pullbacks preserve coproducts in \mathcal{V} . Let B be a category. There is a 2-equivalence

 \mathcal{V} -Fib $(B_{\mathcal{V}}) \cong 2$ -Fun $(B^{op}, \mathcal{V}$ -Cat).

Fibrations 000000	Enriched Cats 000	Enriched Fibs 0000	Grothendieck Construction	Comod/Comon
Outline				

- 2 Enriched Categories
- 3 Enriched Fibrations (Fibrations in a 2-Cat)
- 4 The Enriched Grothendieck Construction
- 5 Comonoid/Comodule Categories and Fibrations

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		●oooooo
$\mathcal{V} = Vec$	t _k			

What if 1 is not terminal? e.g. $\mathcal{V} = \mathbf{Vect}_k$

Fibrations 000000	Enriched Cats	Enriched Fibs 0000	Grothendieck Construction	Comod/Comon ●000000
$\mathcal{V} = Vec$	t _k			

```
What if 1 is not terminal? e.g. \mathcal{V} = \mathbf{Vect}_k
```

Every comonoid has counit $C \rightarrow 1$, so maybe enrich over **Comon**(\mathcal{V}) instead?

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		●000000
$\mathcal{V} = Vec$	t _k			

```
What if 1 is not terminal? e.g. \mathcal{V} = \mathbf{Vect}_k
```

Every comonoid has counit $C \to \mathbf{1}$, so maybe enrich over **Comon**(\mathcal{V}) instead? But this would be a statement about *B*-indexed **Comon**(\mathcal{V})-categories $B^{op} \to$ **Comon**(\mathcal{V})-**Cat**.

Fibrations 000000	Enriched Cats	Enriched Fibs 0000	Grothendieck Construction	Comod/Comon ●000000
$\mathcal{V} = Vec$	\mathbf{t}_k			

```
What if 1 is not terminal? e.g. \mathcal{V} = \mathbf{Vect}_k
```

Every comonoid has counit $C \to \mathbf{1}$, so maybe enrich over $\mathbf{Comon}(\mathcal{V})$ instead? But this would be a statement about *B*-indexed $\mathbf{Comon}(\mathcal{V})$ -categories $B^{op} \to \mathbf{Comon}(\mathcal{V})$ -Cat.

Can't we say more about *B*-indexed *V*-categories $B^{op} \rightarrow V$ -**Cat**? Where does the Grothendieck construction land?

Another r	perspective			
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		o●○○○○○

Another perspective						
Fibrations E	Enriched Cats	Enriched Fibs 0000	Grothendieck Construction	Comod/Comon 0●00000		

Comon(Set) = Set!

Another n	erspective			
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		o●○○○○○

Comon(Set) = Set!

Maybe substitute some **Set**s by \mathcal{V} and others by **Comon**(\mathcal{V}):

Another r	erspective			
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		○●○○○○○

Comon(Set) = Set!

Maybe substitute some **Set**s by \mathcal{V} and others by **Comon**(\mathcal{V}):

 $^{\prime}CoactFib'(\mathcal{V})(B_{Comon(\mathcal{V})}) \cong 2\text{-Fun}(B^{op}, \mathcal{V}\text{-Cat})?$

Another	perspective			
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		oooooo

Comon(Set) = Set!

Maybe substitute some **Set**s by \mathcal{V} and others by **Comon**(\mathcal{V}):

'CoactFib'(\mathcal{V})($B_{\text{Comon}(\mathcal{V})}$) \cong 2-Fun(B^{op} , \mathcal{V} -Cat)?

Theorem (Cohen & Montgomery 1984,...,Tamaki 2009)

G-coactions ('fibrations' over G) \leftrightarrow *G*-actions

Another r	erspective			
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		○●○○○○○

Comon(Set) = Set!

Maybe substitute some **Set**s by \mathcal{V} and others by **Comon**(\mathcal{V}):

'CoactFib'(\mathcal{V})($B_{\text{Comon}(\mathcal{V})}$) \cong 2-Fun(B^{op} , \mathcal{V} -Cat)?

Theorem (Cohen & Montgomery 1984,..., Tamaki 2009)

G-coactions ('fibrations' over G) \leftrightarrow G-actions

Can we make this precise? What should CoactFib be?

We may not have maps $V \to \mathbf{1}$, but every V has a coaction by $\mathbf{1}$:

 $V \xrightarrow{\cong} V \otimes \mathbf{1}.$

We may not have maps $V \rightarrow \mathbf{1}$, but every V has a coaction by $\mathbf{1}$:

 $V \xrightarrow{\cong} V \otimes \mathbf{1}.$

More generally, instead of maps $V \rightarrow C$, where C is a comonoid, we can ask for coactions

 $V \rightarrow V \otimes C$.

We may not have maps $V \rightarrow \mathbf{1}$, but every V has a coaction by $\mathbf{1}$:

 $V \xrightarrow{\cong} V \otimes \mathbf{1}.$

More generally, instead of maps $V \rightarrow C$, where C is a comonoid, we can ask for coactions

$$V \to V \otimes C$$
.

When $\otimes = \times$, coactions correspond to maps $V \to C$, so coactions are 'generalized maps'.

We may not have maps $V \rightarrow \mathbf{1}$, but every V has a coaction by $\mathbf{1}$:

 $V \xrightarrow{\cong} V \otimes \mathbf{1}.$

More generally, instead of maps $V \rightarrow C$, where C is a comonoid, we can ask for coactions

$$V \to V \otimes C$$
.

When $\otimes = \times$, coactions correspond to maps $V \to C$, so coactions are 'generalized maps'. \leftarrow Can't always be composed!

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		○○○●○○○
The cor				

• Arbitrary coactions can't be composed

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon		
000000	000	0000		○○○●○○○		
The comodule bifibration						

- Arbitrary coactions can't be composed
- Coactions arising from comonoid maps can be composed

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon		
000000	000	0000		○○○●○○○		
The comodule bifibration						

- Arbitrary coactions can't be composed
- Coactions arising from comonoid maps can be composed
- Comodule maps can be composed, but are not coactions

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon		
000000	000	0000		○○○●○○○		
The comodule bifibration						

- Arbitrary coactions can't be composed
- Coactions arising from comonoid maps can be composed
- Comodule maps can be composed, but are not coactions

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon		
000000	000	0000		○○○●○○○		
The comodule bifibration						

- Arbitrary coactions can't be composed
- Coactions arising from comonoid maps can be composed
- Comodule maps can be composed, but are not coactions

What framework handles all these?

- Arbitrary coactions can't be composed
- Coactions arising from comonoid maps can be composed
- Comodule maps can be composed, but are not coactions

What framework handles all these? The comodule bifibration!

- Arbitrary coactions can't be composed
- Coactions arising from comonoid maps can be composed
- Comodule maps can be composed, but are not coactions

What framework handles all these? The comodule bifibration!

Cotensoring acts like pullback against a coaction, so this behaves like a category with pullbacks.

 Fibrations
 Enriched Cats
 Enriched Fibs
 Grothendieck Construction
 Comod/Comon

 00000
 000
 000
 000
 000
 000

The comodule bifibration, categorified

Going up a dimension, we get:

```
\textbf{Comod}(\mathcal{V}\text{-}\textbf{Cat}) \rightarrow \textbf{Comon}(\mathcal{V}\text{-}\textbf{Cat})
```

 $[\]textbf{Comon}(\mathcal{V}\textbf{-}\textbf{Cat}) = \textbf{Comon}(\mathcal{V})\textbf{-}\textbf{Cat}, \text{ but } \textbf{Comod}(\mathcal{V}\textbf{-}\textbf{Cat}) \neq \textbf{Comod}(\mathcal{V})\textbf{-}\textbf{Cat}.$

 Fibrations
 Enriched Cats
 Enriched Fibs
 Grothendieck Construction
 Comod/Comon

 Ooo
 Ooo
 Ooo
 Ooo
 Ooo
 Ooo

Going up a dimension, we get:

```
\textbf{Comod}(\mathcal{V}\text{-}\textbf{Cat}) \rightarrow \textbf{Comon}(\mathcal{V}\text{-}\textbf{Cat})
```

In addition to 'pullbacks', this has 'comma objects':

 $Comon(\mathcal{V}\text{-}Cat) = Comon(\mathcal{V})\text{-}Cat, \text{ but } Comod(\mathcal{V}\text{-}Cat) \neq Comod(\mathcal{V})\text{-}Cat.$

 Fibrations
 Enriched Cats
 Enriched Fibs
 Grothendieck Construction
 Comod/Comon

 Ooo
 Ooo
 Ooo
 Ooo
 Ooo
 Ooo

Going up a dimension, we get:

```
\textbf{Comod}(\mathcal{V}\text{-}\textbf{Cat}) \rightarrow \textbf{Comon}(\mathcal{V}\text{-}\textbf{Cat})
```

In addition to 'pullbacks', this has 'comma objects':

So we can define 'fibrations'!

 $Comon(\mathcal{V}\text{-}Cat) = Comon(\mathcal{V})\text{-}Cat, \text{ but } Comod(\mathcal{V}\text{-}Cat) \neq Comod(\mathcal{V})\text{-}Cat.$

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon	
000000	000	0000		○○○○○●○	
Fibrations 'in' a 2-functor					

For a 2-functor $P: \mathcal{M} \to \mathcal{K}$ admitting 'pullbacks' and 'commas', we may define the category P-**Fib** of P-**fibrations**.

Fibrations	'in' a 2-fun	ctor		
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		○○○○○●○

For a 2-functor $P: \mathcal{M} \to \mathcal{K}$ admitting 'pullbacks' and 'commas', we may define the category P-**Fib** of P-**fibrations**.

Proposition? (W.)

For suitable \mathcal{V} , there are 2-functors

P-Fib $(B_{\mathcal{V}}) \leftrightarrow 2$ -Fun $(B^{op}, \mathcal{V}$ -Cat),

where $P: \text{Comod}(\mathcal{V}\text{-}\text{Cat}) \rightarrow \text{Comon}(\mathcal{V}\text{-}\text{Cat}).$

Fibrations	'in' a 2-fun	ctor		
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		○○○○○●○

For a 2-functor $P: \mathcal{M} \to \mathcal{K}$ admitting 'pullbacks' and 'commas', we may define the category P-**Fib** of P-**fibrations**.

Proposition? (W.)

For suitable \mathcal{V} , there are 2-functors

P-Fib $(B_{\mathcal{V}}) \leftrightarrow 2$ -Fun $(B^{op}, \mathcal{V}$ -Cat),

where $P: \text{Comod}(\mathcal{V}\text{-}\text{Cat}) \rightarrow \text{Comon}(\mathcal{V}\text{-}\text{Cat}).$

However, this is unlikely to be an equivalence: Full comonoid structure is too much, we only need the counit.

A cartesia	n heirarchy			
Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon
000000	000	0000		○○○○○○●

Monoidal \mathcal{V}

 Fibrations
 Enriched Cats
 Enriched Fibs
 Grothendieck Construction
 Comod/Comon

 Ooo
 Ooo
 Ooo
 Ooo
 Ooo
 Ooo
 Ooo

 A cartesian heirarchy
 Image: Comod/Comon
 Image: Comod/Comon
 Ooo
 Ooo
 Ooo

$\begin{array}{ccc} \mathsf{Monoidal} & \mathcal{V} \\ + & \mathsf{Projections} & \mathsf{Aug}(\mathcal{V}) = \mathcal{V}/\mathbf{1} \end{array}$

Fibrations 000000	Enriched Cats 000	Enriched Fibs 0000	Grothendieck Construction	Comod/Comon ○○○○○○●
A cartesia	n heirarchy			

Monoidal Projections

+ Diagonals

+

 $egin{array}{lll} \mathcal{V} \ \mathbf{Aug}(\mathcal{V}) = \mathcal{V}/\mathbf{1} \ \mathbf{Comon}(\mathcal{V}) \end{array}$
Fibrations
 Enriched Cats
 Enriched Fibs
 Grothendieck Construction
 Comod/Comon

 Ocoooco
 A cartesian heirarchy
 Soooco
 Soooco
 Soooco
 Soooco

Monoidal

- + Projections
- + Diagonals

+ Cocommutative

 $egin{aligned} \mathcal{V} \ \mathbf{Aug}(\mathcal{V}) &= \mathcal{V}/\mathbf{1} \ \mathbf{Comon}(\mathcal{V}) \ \mathbf{Comon}(\mathbf{Comon}(\mathcal{V})) \end{aligned}$

Monoidal

- + Projections
- + Diagonals
- + Cocommutative
- = Cartesian

 $egin{aligned} \mathcal{V} \ \mathbf{Aug}(\mathcal{V}) &= \mathcal{V}/\mathbf{1} \ \mathbf{Comon}(\mathcal{V}) \ \mathbf{Comon}(\mathbf{Comon}(\mathcal{V})) \end{aligned}$

 Fibrations
 Enriched Cats
 Enriched Fibs
 Grothendieck Construction
 Comod/Comon

 000000
 0000
 0000
 0000
 000000
 0000000

 A cartesian heirarchy

- Monoidal
- + Projections
- + Diagonals
- + Cocommutative
- = Cartesian

 $egin{aligned} \mathcal{V} \ \mathbf{Aug}(\mathcal{V}) &= \mathcal{V}/\mathbf{1} \ \mathbf{Comon}(\mathcal{V}) \end{aligned}$

Do we get equivalence if P: **Augmod**(\mathcal{V} -**Cat**) \rightarrow **Aug**(\mathcal{V} -**Cat**)?

 Fibrations
 Enriched Cats
 Enriched Fibs
 Grothendieck Construction
 Comod/Comon

 000000
 0000
 0000
 0000
 000000
 0000000

 A cartesian heirarchy

Μ	onoidal
	onoraui

- + Projections
- + Diagonals
- + Cocommutative
- = Cartesian

 $egin{aligned} \mathsf{Aug}(\mathcal{V}) &= \mathcal{V}/\mathbf{1} \ \mathbf{Comon}(\mathcal{V}) \end{aligned}$ $\mathbf{Comon}(\mathbf{Comon}(\mathcal{V})) \end{aligned}$

V

Do we get equivalence if P: **Augmod**(\mathcal{V} -**Cat**) \rightarrow **Aug**(\mathcal{V} -**Cat**)?

What other results are secretly about comonoids/comodules?

Fibrations	Enriched Cats	Enriched Fibs	Grothendieck Construction	Comod/Comon

Thank you!

 ${\sf Questions}/{\sf comments?}$