Cubes with connections from algebraic weak factorization systems

Liang Ze Wong (work in progress with Chris Kapulkin)

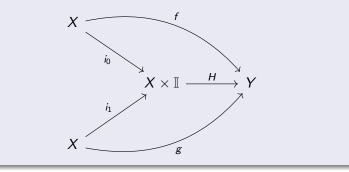
> Western Topology Seminar 11 Nov 2020

- The interval, homotopies, and cubes
- Weak factorization systems
 - Functorial
 - Algebraic
- Cylinders from functorial and algebraic WFS

The interval I = [0, 1] allows us to define *homotopies*:

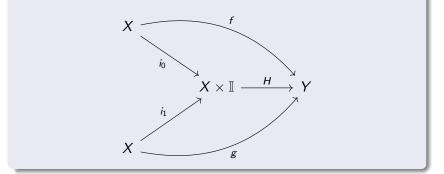
The interval I = [0, 1] allows us to define *homotopies*:

A homotopy from f to g is a function H fitting into the diagram:



The interval I = [0, 1] allows us to define *homotopies*:

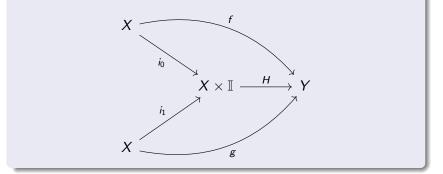
A homotopy from f to g is a function H fitting into the diagram:



From there, we can define homotopy equivalences between objects:

The interval I = [0, 1] allows us to define *homotopies*:

A homotopy from f to g is a function H fitting into the diagram:



From there, we can define homotopy equivalences between objects:

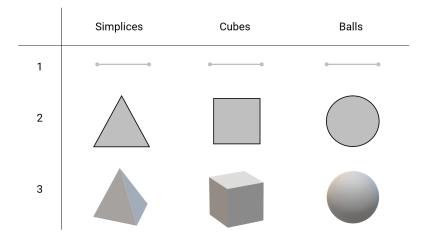
 \rightarrow first example of *weak equivalences* encountered in math

The Interval and Higher-dimensional Geometry

The interval is also the 1-dim version of various *n*-dim objects:

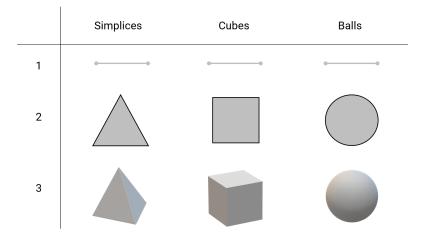
The Interval and Higher-dimensional Geometry

The interval is also the 1-dim version of various *n*-dim objects:



The Interval and Higher-dimensional Geometry

The interval is also the 1-dim version of various *n*-dim objects:



Today, we will focus on *cubes*.

Why cubes?

Proposition

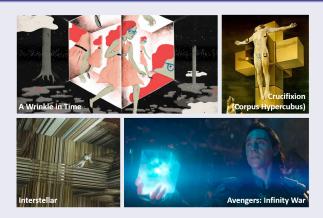
Higher-dimensional cubes are more appealing and intuitive than simplices and balls.

Why cubes?

Proposition

Higher-dimensional cubes are more appealing and intuitive than simplices and balls.

Proof.



The simplex category Δ does have the advantage of simplicity:

- objects are $[n] = \{0 \le 1 \le \cdots \le n\}$
- morphisms are all order-preserving maps
 - generated by faces and degeneracies

The simplex category Δ does have the advantage of simplicity:

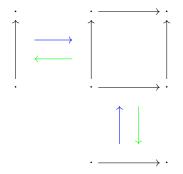
- objects are $[n] = \{0 \le 1 \le \dots \le n\}$
- morphisms are all order-preserving maps
 - generated by faces and degeneracies

By contrast, the *cube category* \square requires some choices:

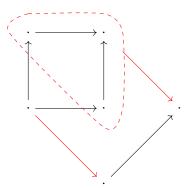
- objects are $[1]^n = \{0 \le 1\}^n$
- morphisms are some subset of order-preserving maps
 - $\bullet\,$ generated by faces and degeneracies, and possibly \ldots
 - connections
 - symmetries
 - diagonals

Generators for maps in \Box :

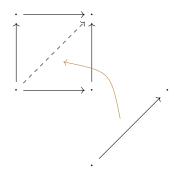
• face and degeneracy maps



- face and degeneracy maps
- connections (max & min)



- face and degeneracy maps
- connections (max & min)
- diagonals and symmetries



- face and degeneracy maps
- connections (max & min)
- diagonals and symmetries

¹Kapulkin-Lindsey-W. 2019

• \Box is a generalized Reedy category

¹Kapulkin-Lindsey-W. 2019

- \Box is a generalized Reedy category
- \bullet \square is a strict test category

¹Kapulkin-Lindsey-W. 2019

- \Box is a generalized Reedy category
- $\bullet \ \Box$ is a strict test category
- $\bullet~\mathsf{There}~\mathsf{is}~\mathsf{a}~\mathsf{co-reflective}~\mathsf{embedding}^1~\mathsf{sSet} \hookrightarrow \mathsf{cSet}$

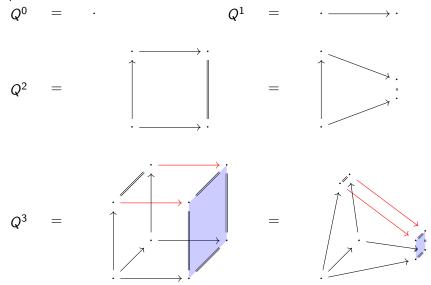
¹Kapulkin-Lindsey-W. 2019

- \Box is a generalized Reedy category
- $\bullet \ \Box$ is a strict test category
- $\bullet~\mathsf{There}~\mathsf{is}~\mathsf{a}~\mathsf{co-reflective}~\mathsf{embedding}^1~\mathsf{sSet} \hookrightarrow \mathsf{cSet}$
- It's exactly what we get from *algebraic* weak factorization systems (this talk)

¹Kapulkin-Lindsey-W. 2019

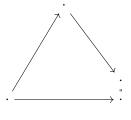
As long as \Box has faces and degeneracies, we can define certain quotients of the standard cubes in **cSet**:

As long as \Box has faces and degeneracies, we can define certain quotients of the standard cubes in **cSet**:



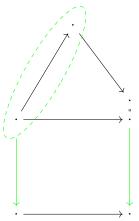
But we need connections to get all the "simplicial degeneracies" between Q^n s:

But we need connections to get all the "simplicial degeneracies" between Q^n s:

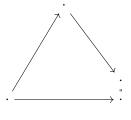


֥

But we need connections to get all the "simplicial degeneracies" between Q^n s:

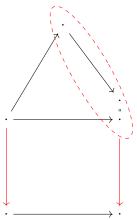


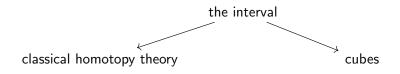
But we need connections to get all the "simplicial degeneracies" between Q^n s:

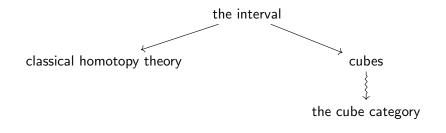


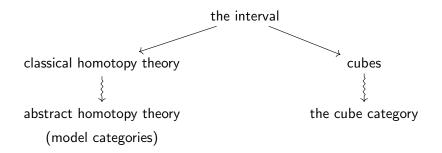
֥

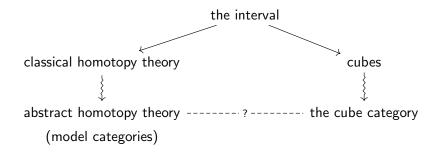
But we need connections to get all the "simplicial degeneracies" between Q^n s:











A model category has all limits and colimits, and classes of:

- $\xrightarrow{\sim}$ weak equivalences satisfying 2-out-of-3
- >---> cofibrations (nice injections)
- — *fibrations* (nice surjections)

A model category has all limits and colimits, and classes of:

- $\xrightarrow{\sim}$ weak equivalences satisfying 2-out-of-3
- >---> cofibrations (nice injections)
- — *fibrations* (nice surjections)

such that we have weak factorization systems:

$$(\xrightarrow{\sim} , \longrightarrow)$$

$$(\longrightarrow , \stackrel{\sim}{\longrightarrow})$$

٠

 \bullet Every map in ${\mathcal C}$ factors as

$$\stackrel{\in \mathcal{L}}{\longrightarrow} \cdot \stackrel{\in \mathcal{R}}{\longrightarrow} \cdot$$

 \bullet Every map in ${\mathcal C}$ factors as

$$\stackrel{\in \mathcal{L}}{\longrightarrow} \cdot \stackrel{\in \mathcal{R}}{\longrightarrow} \cdot$$

• There exist lifts for squares of the following form:

 \bullet Every map in ${\mathcal C}$ factors as

$$\stackrel{\in \mathcal{L}}{\longrightarrow} \cdot \stackrel{\in \mathcal{R}}{\longrightarrow} \cdot$$

• There exist lifts for squares of the following form:

 \bullet Every map in ${\mathcal C}$ factors as

$$\stackrel{\in \mathcal{L}}{\longrightarrow} \cdot \stackrel{\in \mathcal{R}}{\longrightarrow} \cdot$$

• There exist lifts for squares of the following form:

Factorizations and lifts are not unique!

An orthogonal factorization system is one where lifts are unique:

An *orthogonal* factorization system is one where lifts are unique:

But OFS are hard to come by in homotopical contexts.

An orthogonal factorization system is one where lifts are unique:

But OFS are hard to come by in homotopical contexts.

Intermediate versions:

weak functorial algebraic orthogonal

	Factorizations	Lifts
weak	exist	exist
functorial		
algebraic		
orthogonal	unique (up to iso)	unique

	Factorizations	Lifts
weak	exist	exist
functorial	functorial	canonical
algebraic		
orthogonal	unique (up to iso)	unique

	Factorizations	Lifts
weak	exist	exist
functorial	functorial	canonical
algebraic	functorial	*
orthogonal	unique (up to iso)	unique

* Uniqueness of lifts of a very specific kind

	Factorizations	Lifts
weak	exist	exist
functorial	functorial	canonical
algebraic	functorial	*
orthogonal	unique (up to iso)	unique

* Uniqueness of lifts of a very specific kind

We will see how to get cylinders from these WFS

From now on, assume that $\ensuremath{\mathcal{C}}$ has coproducts and a WFS:

$$(\longrightarrow , \stackrel{\sim}{\longrightarrow})$$

From now on, assume that ${\mathcal C}$ has coproducts and a WFS:

$$(\hspace{0.1cm} \longmapsto \hspace{0.1cm} , \hspace{0.1cm} \stackrel{\sim}{\longrightarrow} \hspace{0.1cm})$$

For each $X \in C$, there is the *co-diagonal* or *fold* map:

1

$$X \sqcup X \xrightarrow{\nabla} X$$

From now on, assume that $\mathcal C$ has coproducts and a WFS:

$$(\hspace{0.1cm} \longmapsto \hspace{0.1cm} , \hspace{0.1cm} \stackrel{\sim}{\longrightarrow} \hspace{0.1cm})$$

For each $X \in C$, there is the *co-diagonal* or *fold* map:

$$X \sqcup X \longrightarrow X$$

Factoring ∇ gives a *cylinder object* for *X*:

$$X \sqcup X \longrightarrow CyX \longrightarrow X$$

From now on, assume that C has coproducts and a WFS:

$$(\hspace{0.1cm} \longmapsto \hspace{0.1cm} , \hspace{0.1cm} \stackrel{\sim}{\longrightarrow} \hspace{0.1cm})$$

For each $X \in C$, there is the *co-diagonal* or *fold* map:

$$X \sqcup X \longrightarrow X$$

Factoring ∇ gives a *cylinder object* for *X*:

$$X \sqcup X \longrightarrow \mathsf{Cy} X \longrightarrow^{\sim} X$$

 $\operatorname{Cy} X$ is a substitute for $X \otimes \mathbb{I}$ in the absence of \mathbb{I} or \otimes

From now on, assume that C has coproducts and a WFS:

$$(\hspace{0.1cm} \longmapsto \hspace{0.1cm} , \hspace{0.1cm} \stackrel{\sim}{\longrightarrow} \hspace{0.1cm})$$

For each $X \in C$, there is the *co-diagonal* or *fold* map:

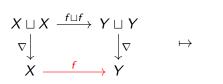
$$X \sqcup X \longrightarrow X$$

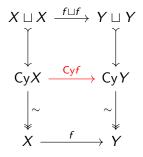
Factoring ∇ gives a *cylinder object* for *X*:

$$X \sqcup X \longrightarrow \mathsf{Cy} X \longrightarrow^{\sim} X$$

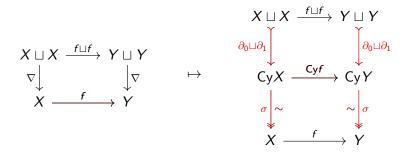
CyX is a substitute for $X \otimes I$ in the absence of I or \otimes e.g. can define homotopies using CyX

If we have a *functorial* WFS, then Cy becomes a functor as well:





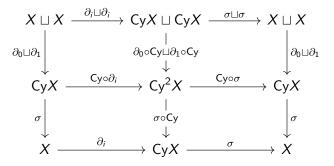
If we have a *functorial* WFS, then Cy becomes a functor as well:



And the left and right factorizations of ∇ are components of *face* and *degeneracy* natural transformations:

$$\partial_i \colon \mathsf{Id} \Rightarrow \mathsf{Cy} \qquad \sigma \colon \mathsf{Cy} \Rightarrow \mathsf{Id}$$

Applying Cy to the components of ∂_i and σ , we get the *cubical identities* for faces and degeneracies:



 $\sigma \ \partial_i = \mathsf{Id}$ $(\partial_i \circ \mathsf{Cy}) \ \partial_j = (\mathsf{Cy} \circ \partial_j) \ \partial_i$ $(\sigma \circ \mathsf{Cy})(\mathsf{Cy} \circ \partial_i) = \partial_i \ \sigma = (\mathsf{Cy} \circ \sigma)(\partial_i \circ \mathsf{Cy})$ $\sigma \ (\mathsf{Cy} \circ \sigma) = \sigma \ (\sigma \circ \mathsf{Cy})$

Lemma

A category C with coproducts and a functorial WFS has:

- $\bullet~$ a cylinder functor Cy: $\mathcal{C} \to \mathcal{C}$
- $\bullet \ \textit{faces} \ \partial_0, \partial_1 \colon \mathsf{Id} \Rightarrow \mathsf{Cy}$
- degeneracies $\sigma \colon Cy \Rightarrow Id$

satisfying the cubical identities for faces and degeneracies.

Lemma

A category C with coproducts and a functorial WFS has:

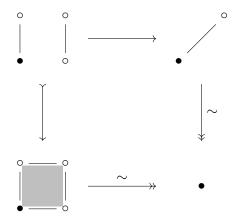
- a cylinder functor $\mathsf{Cy}\colon \mathcal{C}\to \mathcal{C}$
- faces $\partial_0, \partial_1 \colon \mathsf{Id} \Rightarrow \mathsf{Cy}$
- degeneracies $\sigma \colon Cy \Rightarrow Id$

satisfying the cubical identities for faces and degeneracies.

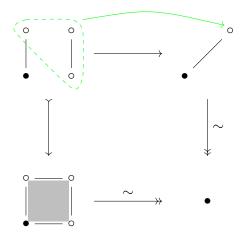
Each $X \in C$ gives a co-cubical object (without connections):

$$X \xrightarrow{\longrightarrow} CyX \xrightarrow{\longleftarrow} Cy^2X \cdots \cdots$$

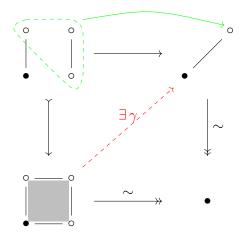
With the current setup (coproducts and functorial WFS), we can actually define connections:



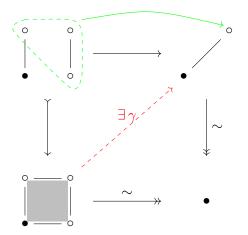
With the current setup (coproducts and functorial WFS), we can actually define connections:



With the current setup (coproducts and functorial WFS), we can actually define connections:



With the current setup (coproducts and functorial WFS), we can actually define connections:



But we can't get some cubical identities without uniqueness of lifts.

$$X \xrightarrow{f} Y \longrightarrow X \xrightarrow{Lf} \cdot \xrightarrow{Rf} Y$$

$$X \xrightarrow{f} Y \longrightarrow X \xrightarrow{Lf} \cdot \xrightarrow{Rf} Y$$

In an algebraic WFS, L is a comonad and R is a monad.

$$X \xrightarrow{f} Y \longrightarrow X \xrightarrow{Lf} \cdot \xrightarrow{Rf} Y$$

In an *algebraic* WFS, L is a *comonad* and R is a *monad*.

Although we still don't have uniqueness of lifts in general, we have uniqueness of *R*-algebra homomorphisms out of *free R-algebras*.

$$X \stackrel{f}{\longrightarrow} Y \qquad \rightsquigarrow \qquad X \stackrel{Lf}{\longrightarrow} \cdot \stackrel{Rf}{\longrightarrow} Y$$

In an *algebraic* WFS, L is a *comonad* and R is a *monad*.

Although we still don't have uniqueness of lifts in general, we have uniqueness of *R*-algebra homomorphisms out of *free R-algebras*.

 \rightarrow this is enough to make connections satisfy cubical identities!

Proposition (Kapulkin-W.)

A category C with coproducts and an algebraic WFS has:

- a cylinder functor $\mathsf{Cy}\colon \mathcal{C}\to \mathcal{C}$
- faces $\partial_0, \partial_1 \colon \mathsf{Id} \Rightarrow \mathsf{Cy}$
- degeneracies $\sigma \colon Cy \Rightarrow Id$
- connections $\gamma_0, \gamma_1 \colon Cy^2 \Rightarrow Cy$

satisfying the identities for faces, degeneracies and connections.

Proposition (Kapulkin-W.)

A category ${\mathcal C}$ with coproducts and an algebraic WFS has:

- $\bullet~$ a cylinder functor Cy: $\mathcal{C} \rightarrow \mathcal{C}$
- faces $\partial_0, \partial_1 \colon \mathsf{Id} \Rightarrow \mathsf{Cy}$
- degeneracies $\sigma \colon Cy \Rightarrow Id$
- connections $\gamma_0, \gamma_1 \colon Cy^2 \Rightarrow Cy$

satisfying the identities for faces, degeneracies and connections.

Each $X \in C$ gives a co-cubical object with connections:

$$X \xrightarrow{\longrightarrow} CyX \xrightarrow{\longleftarrow} Cy^2X \cdots \cdots$$

Corollary

A category ${\mathcal C}$ with coproducts and an algebraic WFS is enriched over cubical sets, with

$$\mathcal{C}(X,Y)_n := \mathcal{C}(\mathrm{Cy}^n X,Y).$$

Corollary

A category ${\mathcal C}$ with coproducts and an algebraic WFS is enriched over cubical sets, with

$$\mathcal{C}(X,Y)_n := \mathcal{C}(\mathrm{Cy}^n X,Y).$$

Theorem (Garner '09)

Let *C* be a cocomplete category satisfying a 'smallness' condition (e.g. locally presentable). Then any cofibrantly generated WFS can be upgraded to an algebraic WFS.

Corollary

A category ${\mathcal C}$ with coproducts and an algebraic WFS is enriched over cubical sets, with

$$\mathcal{C}(X,Y)_n := \mathcal{C}(\mathrm{Cy}^n X,Y).$$

Theorem (Garner '09)

Let *C* be a cocomplete category satisfying a 'smallness' condition (e.g. locally presentable). Then any cofibrantly generated WFS can be upgraded to an algebraic WFS.

Corollary

Any category satisfying the above conditions is enriched over cubical sets.

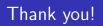
• The dual version also holds (with products & path objects)

- The dual version also holds (with products & path objects)
- If C is an *algebraic model category* (Riehl '11):

- The dual version also holds (with products & path objects)
- If C is an *algebraic model category* (Riehl '11):
 - We get two enrichments: how are they related?

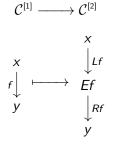
- The dual version also holds (with products & path objects)
- If C is an *algebraic model category* (Riehl '11):
 - We get two enrichments: how are they related?
 - Is C an enriched model category?

- The dual version also holds (with products & path objects)
- If C is an *algebraic model category* (Riehl '11):
 - We get two enrichments: how are they related?
 - Is C an enriched model category?
- By quotienting cubes, can we make C simplicially enriched?



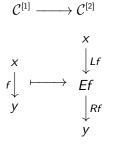
Background on functorial and algebraic WFS

A functorial factorization on a category ${\mathcal C}$ is a functor



that is a section of the composition functor.

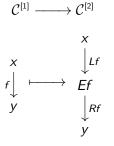
A functorial factorization on a category \mathcal{C} is a functor



that is a section of the composition functor.

This gives rise to functors $L, R: \mathcal{C}^{[1]} \to \mathcal{C}^{[1]}$ and $E: \mathcal{C}^{[1]} \to \mathcal{C}$.

A functorial factorization on a category \mathcal{C} is a functor



that is a section of the composition functor.

This gives rise to functors $L, R: \mathcal{C}^{[1]} \to \mathcal{C}^{[1]}$ and $E: \mathcal{C}^{[1]} \to \mathcal{C}$.

A WFS $(\mathcal{L}, \mathcal{R})$ is functorial if it has a functorial factorization with

$$Lf \in \mathcal{L}$$
 and $Rf \in \mathcal{R}$.

The endofunctor $R: \mathcal{C}^{[1]} \to \mathcal{C}^{[1]}$ is *pointed*:

The endofunctor $R: \mathcal{C}^{[1]} \to \mathcal{C}^{[1]}$ is *pointed*:

i.e. there is a natural transformation $\eta\colon \mathsf{Id}\Rightarrow R$

$$\eta_f = \begin{array}{c} \cdot & \stackrel{Lf}{\longrightarrow} \cdot \\ f \downarrow & & \downarrow_{Rf} \\ \cdot & & \vdots \end{array}$$

The endofunctor $R: \mathcal{C}^{[1]} \to \mathcal{C}^{[1]}$ is *pointed*:

i.e. there is a natural transformation $\eta \colon \mathsf{Id} \Rightarrow R$

$$\eta_f = \begin{array}{c} \cdot & \stackrel{Lf}{\longrightarrow} \cdot \\ f \\ \cdot & & \downarrow_{Rf} \\ \cdot & & \cdot \end{array}$$

We can go further and ask for μ : $RR \Rightarrow R$ making R a monad.

The endofunctor $R: \mathcal{C}^{[1]} \to \mathcal{C}^{[1]}$ is *pointed*:

i.e. there is a natural transformation $\eta \colon \mathsf{Id} \Rightarrow R$

$$\eta_f = \begin{array}{c} \cdot & \xrightarrow{Lf} & \cdot \\ f & \downarrow & \downarrow_{Rf} \\ \cdot & & \vdots \end{array}$$

We can go further and ask for μ : $RR \Rightarrow R$ making R a monad.

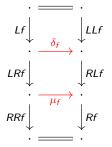
Dually:

 $L: \mathcal{C}^{[1]} \to \mathcal{C}^{[1]}$ is co-pointed, and we may ask if L is a comonad.

Definition (Grandis-Tholen '06, Garner '07)

An algebraic WFS is a functorial WFS along with

- $\delta: L \Rightarrow LL$ making L a comonad
- $\mu \colon RR \Rightarrow R$ making R a monad
- such that (δ, μ) : $LR \Rightarrow RL$ is a distributive law



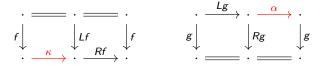
Since R is a monad, we can talk about R-algebras: maps g equipped with an action $\alpha \colon Rg \to g$.

Since R is a monad, we can talk about R-algebras: maps g equipped with an action $\alpha \colon Rg \to g$.

Dually, *L-coalgebras* have a co-action $\kappa \colon f \to Lf$.

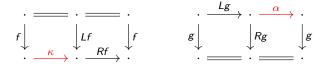
Since R is a monad, we can talk about R-algebras: maps g equipped with an action $\alpha \colon Rg \to g$.

Dually, *L-coalgebras* have a co-action $\kappa \colon f \to Lf$.

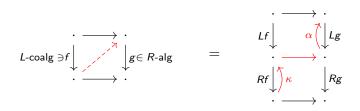


Since *R* is a monad, we can talk about *R*-algebras: maps *g* equipped with an action $\alpha \colon Rg \to g$.

Dually, *L-coalgebras* have a co-action $\kappa \colon f \to Lf$.



This gives *canonical* lifts of *L*-coalgebras against *R*-algebras!



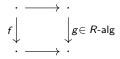
Free algebras

We can do even better for *free R*-algebras: *Rf* for any *f*, with action given by $\mu_f : RRf \to Rf$.

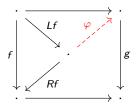
Free algebras

We can do even better for *free R*-algebras: *Rf* for any *f*, with action given by $\mu_f : RRf \to Rf$.

For any commuting square where g is an R-algebra:



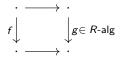
there is a *unique* R-algebra map $\varphi \colon Rf \to g$:



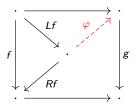
Free algebras

We can do even better for *free R*-algebras: *Rf* for any *f*, with action given by $\mu_f : RRf \to Rf$.

For any commuting square where g is an R-algebra:



there is a *unique* R-algebra map $\varphi \colon Rf \to g$:



Warning: this is only unique as an R-algebra map.