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The Interval and Homotopies

The interval I = [0, 1] allows us to define homotopies:

A homotopy from f to g is a function H fitting into the diagram:

X

X × I Y

X

i0

f

H

i1

g

From there, we can define homotopy equivalences between objects:

→ first example of weak equivalences encountered in math
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The interval is also the 1-dim version of various n-dim objects:

Today, we will focus on cubes.
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Proposition

Higher-dimensional cubes are more appealing and intuitive than
simplices and balls.

Proof.
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Simplices vs cubes

The simplex category ∆ does have the advantage of simplicity:

objects are [n] = {0 ≤ 1 ≤ · · · ≤ n}
morphisms are all order-preserving maps

generated by faces and degeneracies

By contrast, the cube category � requires some choices:

objects are [1]n = {0 ≤ 1}n

morphisms are some subset of order-preserving maps

generated by faces and degeneracies, and possibly . . .
connections
symmetries
diagonals
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Cubes with connections

The case for faces, degeneracies and connections:

� is a generalized Reedy category

� is a strict test category

There is a co-reflective embedding1 sSet ↪→ cSet

It’s exactly what we get from algebraic weak factorization
systems (this talk)

1Kapulkin-Lindsey-W. 2019
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Interlude: Embedding sSet into cSet
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quotients of the standard cubes in cSet:
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Model categories

A model category has all limits and colimits, and classes of:

∼ weak equivalences satisfying 2-out-of-3

cofibrations (nice injections)

fibrations (nice surjections)

such that we have weak factorization systems:

( , )
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Weak Factorization Systems

A weak factorization system (WFS) on a category C consists of
two classes of maps L,R such that:

Every map in C factors as

· · ·∈ L ∈ R

There exist lifts for squares of the following form:

· ·

· ·

L 3 ∈ R∃

Factorizations and lifts are not unique!
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An orthogonal factorization system is one where lifts are unique:
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But OFS are hard to come by in homotopical contexts.

Intermediate versions:

· · · ·

weak functorial algebraic orthogonal
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Weak Factorization Systems

Factorizations Lifts

weak exist exist

functorial

functorial canonical

algebraic

functorial *

orthogonal unique unique
(up to iso)

* Uniqueness of lifts of a very specific kind

We will see how to get cylinders from these WFS
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Cylinders from WFS

From now on, assume that C has coproducts and a WFS:

( , )∼

For each X ∈ C, there is the co-diagonal or fold map:

X t X
∇−−−−−→ X

Factoring ∇ gives a cylinder object for X :

X t X CyX X∼

CyX is a substitute for X ⊗ I in the absence of I or ⊗
e.g. can define homotopies using CyX
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Cylinders from functorial WFS

If we have a functorial WFS, then Cy becomes a functor as well:

X t X Y t Y

X Y

f tf

∇ ∇
ff

7→

X t X Y t Y

CyX CyY

X Y

f tf

∂0t∂1 ∂0t∂1

CyfCyf

∼∼σ ∼∼ σ

f

And the left and right factorizations of ∇ are components of face
and degeneracy natural transformations:

∂i : Id⇒ Cy σ : Cy⇒ Id
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Cylinders from functorial WFS

Applying Cy to the components of ∂i and σ, we get the cubical
identities for faces and degeneracies:

X t X CyX t CyX X t X

CyX Cy2X CyX

X CyX X

∂it∂i

∂0t∂1

σtσ

∂0◦Cyt∂1◦Cy ∂0t∂1

Cy◦∂i

σ

Cy◦σ

σ◦Cy σ

∂i σ

σ ∂i = Id

(∂i ◦ Cy) ∂j = (Cy ◦ ∂j) ∂i
(σ ◦ Cy)(Cy ◦ ∂i ) = ∂i σ = (Cy ◦ σ)(∂i ◦ Cy)

σ (Cy ◦ σ) = σ (σ ◦ Cy)



Cylinders from functorial WFS

Lemma

A category C with coproducts and a functorial WFS has:

a cylinder functor Cy : C → C
faces ∂0, ∂1 : Id⇒ Cy

degeneracies σ : Cy⇒ Id

satisfying the cubical identities for faces and degeneracies.

Each X ∈ C gives a co-cubical object (without connections):

X CyX Cy2X · · ·· · ·
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Cylinders from functorial WFS

With the current setup (coproducts and functorial WFS), we can
actually define connections:

• ◦
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◦ ◦
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∼

∃ γ

But we can’t get some cubical identities without uniqueness of lifts.
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Cylinders from algebraic WFS

In a functorial WFS, we have L : C [1] → C [1] and R : C [1] → C [1]:

X Yf  X · YLf Rf

In an algebraic WFS, L is a comonad and R is a monad.

Although we still don’t have uniqueness of lifts in general, we have
uniqueness of R-algebra homomorphisms out of free R-algebras.

→ this is enough to make connections satisfy cubical identities!



Cylinders from algebraic WFS

In a functorial WFS, we have L : C [1] → C [1] and R : C [1] → C [1]:

X Yf  X · YLf Rf

In an algebraic WFS, L is a comonad and R is a monad.

Although we still don’t have uniqueness of lifts in general, we have
uniqueness of R-algebra homomorphisms out of free R-algebras.

→ this is enough to make connections satisfy cubical identities!



Cylinders from algebraic WFS

In a functorial WFS, we have L : C [1] → C [1] and R : C [1] → C [1]:

X Yf  X · YLf Rf

In an algebraic WFS, L is a comonad and R is a monad.

Although we still don’t have uniqueness of lifts in general, we have
uniqueness of R-algebra homomorphisms out of free R-algebras.

→ this is enough to make connections satisfy cubical identities!



Cylinders from algebraic WFS

In a functorial WFS, we have L : C [1] → C [1] and R : C [1] → C [1]:

X Yf  X · YLf Rf

In an algebraic WFS, L is a comonad and R is a monad.

Although we still don’t have uniqueness of lifts in general, we have
uniqueness of R-algebra homomorphisms out of free R-algebras.

→ this is enough to make connections satisfy cubical identities!



Cylinders from algebraic WFS

Proposition (Kapulkin-W.)

A category C with coproducts and an algebraic WFS has:

a cylinder functor Cy : C → C
faces ∂0, ∂1 : Id⇒ Cy

degeneracies σ : Cy⇒ Id

connections γ0, γ1 : Cy2 ⇒ Cy

satisfying the identities for faces, degeneracies and connections.

Each X ∈ C gives a co-cubical object with connections:

X CyX Cy2X · · ·· · ·
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Cubical enrichment from algebraic WFS

Corollary

A category C with coproducts and an algebraic WFS is enriched
over cubical sets, with

C(X ,Y )n := C(CynX ,Y ).

Theorem (Garner ’09)

Let C be a cocomplete category satisfying a ‘smallness’ condition
(e.g. locally presentable). Then any cofibrantly generated WFS
can be upgraded to an algebraic WFS.

Corollary

Any category satisfying the above conditions is enriched over
cubical sets.
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Final remarks

The dual version also holds (with products & path objects)

If C is an algebraic model category (Riehl ’11):

We get two enrichments: how are they related?
Is C an enriched model category?

By quotienting cubes, can we make C simplicially enriched?
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Background on functorial and algebraic WFS



Functorial factorizations

A functorial factorization on a category C is a functor

C [1] −−−→ C [2]

x

y

f 7−−−→

x

Ef

y

Lf

Rf

that is a section of the composition functor.

This gives rise to functors L,R : C [1] → C [1] and E : C [1] → C.

A WFS (L,R) is functorial if it has a functorial factorization with

Lf ∈ L and Rf ∈ R.



Functorial factorizations

A functorial factorization on a category C is a functor

C [1] −−−→ C [2]

x

y

f 7−−−→

x

Ef

y

Lf

Rf

that is a section of the composition functor.

This gives rise to functors L,R : C [1] → C [1] and E : C [1] → C.

A WFS (L,R) is functorial if it has a functorial factorization with

Lf ∈ L and Rf ∈ R.



Functorial factorizations

A functorial factorization on a category C is a functor

C [1] −−−→ C [2]

x

y

f 7−−−→

x

Ef

y

Lf

Rf

that is a section of the composition functor.

This gives rise to functors L,R : C [1] → C [1] and E : C [1] → C.

A WFS (L,R) is functorial if it has a functorial factorization with

Lf ∈ L and Rf ∈ R.



Functorial factorizations

The endofunctor R : C [1] → C [1] is pointed:

i.e. there is a natural transformation η : Id⇒ R

ηf =

· ·

· ·
f

Lf

Rf

We can go further and ask for µ : RR ⇒ R making R a monad.

Dually:

L : C [1] → C [1] is co-pointed, and we may ask if L is a comonad.
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Algebraic weak factorization systems

Definition (Grandis-Tholen ‘06, Garner ‘07)

An algebraic WFS is a functorial WFS along with

δ : L⇒ LL making L a comonad

µ : RR ⇒ R making R a monad

such that (δ, µ) : LR ⇒ RL is a distributive law

· ·

· ·

· ·

· ·

Lf LLf
δf

LRf RLf

µf

RRf Rf



R-algebras and L-coalgebras

Since R is a monad, we can talk about R-algebras: maps g
equipped with an action α : Rg → g .

Dually, L-coalgebras have a co-action κ : f → Lf .

· · ·

· · ·
f Lf f

κ Rf

· · ·

· · ·
g

Lg α

Rg g

This gives canonical lifts of L-coalgebras against R-algebras!

· ·

· ·
L-coalg 3f g∈ R-alg =

· ·

· ·

· ·

Lf Lg

Rf Rg

α

κ
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This gives canonical lifts of L-coalgebras against R-algebras!

· ·

· ·
L-coalg 3f g∈ R-alg =

· ·
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Free algebras

We can do even better for free R-algebras: Rf for any f , with
action given by µf : RRf → Rf .

For any commuting square where g is an R-algebra:

· ·

· ·
f g∈ R-alg

there is a unique R-algebra map ϕ : Rf → g :

· ·

·

· ·

f

Lf

g

Rf

ϕ

Warning: this is only unique as an R-algebra map.
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