
Minimal Schemas for a Category

(extended abstract)

Liang Ze Wong

July 15, 2019

1 Introduction

This paper is motivated by the question: When is a category C the category of elements∫
F of a functor F : S → Set? Via the correspondence between functors F : S → Set and

discrete opfibrations P : C → S, this is equivalent to the question: When do we have a
discrete opfibration P : C → S? In either case, we call S a schema for C.

We always have a trivial schema for C, given by S = C (and P = 1C). In other words,
every C is a schema for itself. But we would like to know if there are non-trivial solutions
to this problem that are smaller than C in a suitable sense. Even better, we would like to
find the smallest such schema, or the minimal schema, for C.

To motivate this question, recall from [Spi12] that a functor F : S → Set is precisely a
database with schema S. For f : s→ t in S, we write Fs, Ft for the sets F (s) and F (t), and
Ff for the function F (f) : F (s)→ F (t). Given any F : S → Set, we may form its category
of elements

∫
F whose objects are all pairs (s, x) where s ∈ S and x ∈ Fs, and whose

morphisms (s, x)→ (t, y) are all arrows f : s→ t in S such that Ff (x) = y.
The category of elements allows us to encode a database F : S → Set as a category.

Our question thus asks when a given category C encodes the structure and information of
a database F : S → Set.

We note that a positive answer to this question in the case where C (and S) are (directed
multi-)graphs can be found in [BV02]. This paper extends that result to certain categories.

Acknowledgements

An earlier version of this abstract was submitted to Applied Category Theory 2019, and
presented as a poster. We would like to thank the anonymous referees for their comments,
which have helped streamline this paper.

We note also that the question, “Does there exist a terminal surjective discrete (op)fibration
out of C?” has already been asked by David Spivak [Spi14]. This paper provides a partial
answer to that question.

1



2 Constructing a schema for C

We first give a quick overview of coslice categories, which feature prominently in the main
result. For a given object x in a category C, the coslice category x/C is the category whose
objects are morphisms in C with domain x, and whose morphisms are commuting triangles
of the form:

x

y z

f g

h

Any f : x → y in C induces a functor − ◦ f : y/C → x/C. Any functor F : C → D also
induces a functor x/C → Fx/D. We note some results concerning these functors and
isomorphisms of coslice categories:

Lemma 2.1. Let ϕ : x/C ∼= y/C be an isomorphism of coslice categories. For f : x → u,
let v be the codomain of ϕ(f) (so we have ϕ(f) : y → v). Then ϕ induces an isomorphism
u/C ∼= v/C making the following diagram commute:

u/C v/C

x/C y/C

−◦f

∼=

−◦ϕ(f)
ϕ
∼=

Lemma 2.2. Let P : C → S be a functor. Then P is a discrete opfibration if and only if
the induced functor x/C → Px/S is an isomorphism of categories for every c ∈ C.

As an immediate consequence, we have a necessary condition for two objects of C to be
identified by a discrete opfibration:

Corollary 2.3. Let P : C → S be a discrete opfibration, and suppose we have x, y ∈ C such
that Px = Py. Then x/C and y/C are isomorphic.

The main theoretical result of this paper is that the converse holds under certain con-
ditions on C:

Theorem 2.4. Let C be such that each x/C has no non-identity automorphisms. Then
there exists a discrete opfibration P : C → S such that Px = Py if and only if x/C ∼= y/C.

The proof of requires the following lemma:

Lemma 2.5. Let C be such that each x/C has no non-identity automorphisms. Then:

1. Any isomorphism x/C ∼= y/C sends 1x to 1y;

2. For x, y such that x/C ∼= y/C, there is a unique isomorphism ϕ : x/C → y/C.

Proof. For 1, we first observe that the hypothesis on C implies that C is skeletal. Thus
each x/C has a unique initial object 1x, and initial objects are preserved by isomorphisms.

For 2, if ϕ,ψ : x/C → y/C were two distinct isomorphisms, then ψ−1ϕ would be a
non-identity automorphism of x/C.

2



Proof of Theorem 2.4. We will define a category S and a functor P : C → S with the desired
properties. The objects of S are isomorphism classes of coslice categories, denoted [x/C]
for x ∈ C. For morphisms, let

S([x/C], [y/C]) :=
∐

y′∈C s.t.
y′/C∼=y/C

C(c, y′).

The identity on [x/C] is 1x ∈ C(x, x) ⊂ S([x/C], [x/C]). To compose f ∈ S([x/C], [y/C])
with g ∈ S([y/C], [z/C]), suppose f ∈ C(x, y′) and g ∈ C(y, z′), where y′/C ∼= y/C and
z′/C ∼= z/C. Let ϕ : y/C → y′/C be the unique isomorphism between coslices, and let u
be the codomain of ϕ(g) (so we have ϕ(g) : y′ → u). Then u/C ∼= z′/C ∼= z/C by Lemma
2.1, so we may define the composite to be

g ◦ f := ϕ(g) ◦ f ∈ C(x, u) ⊂ S([x/C], [z/C]).

Item 1 of Lemma 2.5 ensures that composition is unital, while Item 2 ensures that it is
associative. We thus have a category S.

It is easy to see that there is a functor P : C → S sending x to [x/C] and f : x → y to
itself, treated as an element of S([x/C], [y/C]). By construction, Px = Py precisely when
x/C ∼= y/C.

Given [x/C] ∈ S and x′ such that Px′ = [x/C] (so x′/C ∼= x/C), and f ∈ C(x, y′) ⊂
S([x/C], [y/C]), we have a unique map ϕ(f) : x′ → u lifting f , where ϕ : x/C ∼= x′/C. Thus
P : C → S is a discrete opfibration.

Remark 2.6. The hypotheses on C are only used to show that composition is unital and
associative. In the absence of these hypotheses, one would need to coherently choose iso-
morphisms between coslice categories in order to have unital and associative composition.
It is unclear if this can always be done, although the author believes so. After all, not all
categories of elements satisfy the hypotheses of the theorem.

Remark 2.7. The analogue of Theorem 2.4 for (directed multi-)graphs can be found in
[BV02, Theorems 2.1, 4.4]. The proof of Theorem 2.4 is slightly more involved, since we
also have to define composition and show that it is unital and associative.

3 Minimality of the schema

We now prove that the schema S constructed in the previous section is minimal in a precise
sense. We begin by defining an appropriate category in which P : C → S is minimal.

Definition 3.1. Let C be a category. The category of schemas CS under C is the full
subcategory of C/Cat whose objects are surjective discrete opfibrations P : C → S.

Note that we are only interested in discrete opfibrations that are surjective (i.e. sur-
jective on objects). Since we are interested in schemas for C, we lose nothing by throwing
away objects of S whose pre-images in C are empty. Also, surjectivity allows us to prove:

3



Lemma 3.2. Suppose we have a commuting triangle of functors

C

S T

P Q

R

where P and Q are surjective discrete opfibrations. Then R is also a surjective discrete
opfibration.

See also Spivak’s MathOverflow question [Spi14] for more remarks on why we might
want to impose surjectivity.

Definition 3.3. A minimal schema for C is a terminal object in CS.

Theorem 3.4. Let C be such that each x/C has no non-identity automorphisms. Then CS
has a terminal object, given by the construction in the proof of Theorem 2.4.

Proof. Let P : C → S be the schema constructed in Theorem 2.4, and let F : C → D be
a surjective discrete opfibration. Since F is a surjective discrete opfibration, D also has
the property that each x/D has no non-identity automorphisms. Further, the isomorphism
classes of coslices in D are the same as those in C. Applying Theorem 2.4 to D, we get
another surjective discrete opfibration P ′ : D → S. We leave it to the reader to verify that
P ′ is the unique functor making the following diagram commute:

C

D S

F P

P ′

Thus P is a terminal object in CS.

We have thus proven the minimality of P . This answers Spivak’s question [Spi14] for
categories satisfying the hypothesis of the theorem.

4 Implications for word embeddings?

We end by speculating about possible implications of our result for word embeddings.
Word embedding algorithms take a corpus of text and embed its words as points in a

high dimensional vector space [MCCD13]. A good embedding not only clusters semantically
similar words together, but also renders similar relationships between words as almost
parallel difference vectors between points. For instance, we might obtain an embedding of
the form:

London

UK

Paris

France

Oxford

(1)

We are interested in the following questions:

4



1. What kind of mathematical structure best describes the resulting embedding?

2. How do the existing algorithms produce such an embedding?

3. Why do the existing algorithms produce such an embedding?

The results of this paper do not answer these questions, at least not in a rigorous sense.
However, the outputs of word embeddings and the category of elements of a database share
some obvious visual similarities.

In a word embedding algorithm, two words that have similar relationships to other words
should be clustered close together. Note that this does not mean that these two words u, v
have the same relationship to a given word w. Rather, if u is related to w in some way,
and v is similar to u, then v should be related to some x in the same way, where x is not
necessarily w! For instance, ‘king’ and ‘kings’ are related in the same way that ‘queen’ and
‘queens’ are related, not ‘queen’ and ‘kings’.

Similarly, if two objects u, v of a category C have isomorphic coslice categories u/C ∼=
v/C, it does not mean that C(u,w) ∼= C(v, w) for each w ∈ C. Rather, every u → w has
a counterpart v → x for some x that is not necessarily w. In fact, we could even have two
arrows u w with the same codomain w corresponding to two arrows v → x and
v → y where x 6= y.

In both word embeddings and isomorphisms of coslice categories, it is the relationships
themselves – independent of the objects that they map to or from – that are of primary
importance.

Finally, by clustering words with similar relationships (‘coslice categories’) close to-
gether, the resulting word embedding achieves the structure of the category of elements of a
database. Similarly, by identifying (‘clustering’) objects with isomorphic coslice categories,
we obtain a schema and a database of which C is the category of elements.

In light of the preceeding discussion, we hope that the following statments will sound
like plausible answers to their respective questions:

1. An embedding aims to capture the structure of the category of elements of a functor
S → Set.

2. Embedding algorithms work by embedding objects with similar coslice categories close
together.

3. This works because for categories C satisfying some conditions, there exists a discrete
opfibration P : C → S such that Px = Py precisely when the coslice categories x/C
and y/C are isomorphic.

These statements are necessarily speculative and imprecise. After all, a corpus of text
does not have the structure of a category. Nevertheless, we hope that the analogy we have
drawn is strong enough to suggest that word embeddings are able to extract approximations
of databases from a corpus of text.

References

[BV02] Paolo Boldi and Sebastiano Vigna, Fibrations of graphs, Discrete Mathematics 243 (2002), no. 1-
3, 21–66.

5



[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, Efficient estimation of word repre-
sentations in vector space, arXiv preprint arXiv:1301.3781 (2013).

[Spi12] David I Spivak, Functorial data migration, Information and Computation 217 (2012), 31–51.

[Spi14] David Spivak, Does there exist a terminal surjective discrete fibration out of C?, 2014. URL:
https://mathoverflow.net/q/157519.

6


	Introduction
	Constructing a schema for C
	Minimality of the schema
	Implications for word embeddings?

