Weak equivalences between categories of models of type theory

Simon Cho Cory M. Knapp Clive Newstead
Liang Ze Wong

Mentors: Chris Kapulkin Emily Riehl

AMS Special Session on Homotopy Type Theory
(a Mathematics Research Communities Session)
NSF Grant No. DMS 1641020

11 Jan 2018
The **Internal Language Conjectures** make precise the belief that intensional type theory is the internal language of ∞-categories:

Conjecture (Kapulkin-Lumsdaine 2016)

There are ∞-equivalences:
In this talk, we present progress towards the ∞-equivalence:

$$\text{Ctx}_{\text{Id}, \Sigma} \longrightarrow \text{Lex}_\infty$$

In this talk, we present progress towards the ∞-equivalence:

\[
\begin{align*}
\text{Ctx}_{\text{Id}, \Sigma} \xrightarrow{\sim} \text{Trb} \xrightarrow{\sim} \text{Fib} \xrightarrow{\sim} \text{Lex}_\infty
\end{align*}
\]

In this talk, we present progress towards the ∞-equivalence:

$$\text{Ctx}_{\text{Id}, \Sigma} \xrightarrow{\sim} \text{Trb} \quad \xrightarrow{\sim} \quad \text{Fib} \quad \xrightarrow{\sim} \quad \text{Lex}_\infty$$

$$\text{Ctx}_{\text{Id}, \Sigma} \quad \xrightarrow{\sim} \quad \text{CwA}_{\text{Id}, \Sigma} \quad \xrightarrow{\sim} \quad \text{Comp}_{\text{Id}, \Sigma} \quad \xrightarrow{[\text{KS}17]} \quad \text{Trb}$$

Theorem (CKNW)

Assume our models satisfy the Logical Framework (LF) of [LW15].

The comparison functors

\[
\begin{align*}
\text{Ctx}_{\text{Id},\Sigma,\text{LF}} & \overset{\sim}{\longrightarrow} \text{CwA}_{\text{Id},\Sigma,\text{LF}} & \overset{\sim}{\longrightarrow} \text{Comp}_{\text{Id},\Sigma,\text{LF}} & \overset{\sim}{\longrightarrow} \text{Trb}_{\text{LF}}
\end{align*}
\]

have homotopy inverses, hence are ∞-equivalences.
Theorem (CKNW)

Assume our models satisfy the Logical Framework (LF) of [LW15].
The comparison functors

\[
\text{Ctx}_{\text{Id},\Sigma,\text{LF}} \leftrightarrow \text{CwA}_{\text{Id},\Sigma,\text{LF}} \leftrightarrow \text{Comp}_{\text{Id},\Sigma,\text{LF}} \leftrightarrow \text{Trb}_{\text{LF}}
\]

have homotopy inverses, hence are ∞-equivalences.

Plan:

- Compare these models of type theory
- Highlight the role that each model plays in the equivalence
- Compare weak equivalences within each model

Type-theoretic models

Ctx ← CwA → Comp ← Trb
Modelling type theories with categories

<table>
<thead>
<tr>
<th>a type theory \mathbb{T}</th>
<th>\mathcal{C} a category</th>
</tr>
</thead>
<tbody>
<tr>
<td>contexts Γ, Δ, \ldots</td>
<td>Γ, Δ, \ldots objects</td>
</tr>
<tr>
<td>substitutions $\Delta \xrightarrow{\sigma} \Gamma$</td>
<td>$\Delta \xrightarrow{\sigma} \Gamma$ maps</td>
</tr>
</tbody>
</table>
Modelling type theories with categories

<table>
<thead>
<tr>
<th>a type theory</th>
<th>\mathcal{T}</th>
<th>\mathcal{C}</th>
<th>a category</th>
</tr>
</thead>
<tbody>
<tr>
<td>contexts</td>
<td>Γ, Δ, \ldots</td>
<td>Γ, Δ, \ldots</td>
<td>objects</td>
</tr>
<tr>
<td>substitutions</td>
<td>$\Delta \xrightarrow{\sigma} \Gamma$</td>
<td>$\Delta \xrightarrow{\sigma} \Gamma$</td>
<td>maps</td>
</tr>
<tr>
<td>types</td>
<td>$\Gamma \vdash A$ type</td>
<td>$\Gamma.A \to \Gamma$</td>
<td>canonical projections</td>
</tr>
<tr>
<td>terms</td>
<td>$\Gamma \vdash a : A$</td>
<td>$\Gamma \xrightarrow{a} \Gamma.A$</td>
<td>sections of $\Gamma.A \to \Gamma$</td>
</tr>
</tbody>
</table>
Modelling type theories with categories

<table>
<thead>
<tr>
<th>a type theory</th>
<th>(T)</th>
<th>(C)</th>
<th>a category</th>
</tr>
</thead>
<tbody>
<tr>
<td>contexts</td>
<td>(\Gamma, \Delta, \ldots)</td>
<td>(\Gamma, \Delta, \ldots)</td>
<td>objects</td>
</tr>
<tr>
<td>substitutions</td>
<td>(\Delta \xrightarrow{\sigma} \Gamma)</td>
<td>(\Delta \xrightarrow{\sigma} \Gamma)</td>
<td>maps</td>
</tr>
<tr>
<td>types</td>
<td>(\Gamma \vdash A) type</td>
<td>(\Gamma.A \twoheadrightarrow \Gamma)</td>
<td>canonical projections</td>
</tr>
<tr>
<td>terms</td>
<td>(\Gamma \vdash a : A)</td>
<td>(\Gamma \xrightarrow{a} \Gamma.A)</td>
<td>sections of (\Gamma.A \twoheadrightarrow \Gamma)</td>
</tr>
<tr>
<td>substitution of (A) along (\Delta \xrightarrow{\sigma} \Gamma)</td>
<td>(A[\sigma])</td>
<td>(\Delta.A[\sigma])</td>
<td>pullback of (\Gamma.A \twoheadrightarrow \Gamma) along (\Delta \xrightarrow{\sigma} \Gamma)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\Delta.A[\sigma] & \xrightarrow{\sigma.A} \Gamma.A \\
\downarrow & \\
\Delta & \xrightarrow{\sigma} \Gamma
\end{align*}
\]
Modelling type theories with categories

<table>
<thead>
<tr>
<th>a type theory \mathbb{T}</th>
<th>a category \mathbb{C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>contexts Γ, Δ, \ldots</td>
<td>contexts Γ, Δ, \ldots</td>
</tr>
<tr>
<td>substitutions $\Delta \xrightarrow{\sigma} \Gamma$</td>
<td>substitutions $\Delta \xrightarrow{\sigma} \Gamma$</td>
</tr>
<tr>
<td>types $\Gamma \vdash A$ type</td>
<td>types $\Gamma \cdot A \rightarrow \Gamma$ canonical projections</td>
</tr>
<tr>
<td>terms $\Gamma \vdash a : A$</td>
<td>terms $\Gamma \xrightarrow{a} \Gamma \cdot A$ sections of $\Gamma \cdot A \rightarrow \Gamma$</td>
</tr>
<tr>
<td>substitution of A along $\Delta \xrightarrow{\sigma} \Gamma$</td>
<td>substitution of A along $\Delta \xrightarrow{\sigma} \Gamma$</td>
</tr>
</tbody>
</table>

Further, choice of pullbacks is functorial.

$$
\begin{array}{c}
\Delta \cdot A[\sigma] \xrightarrow{\sigma \cdot A} \Gamma \cdot A \\
\downarrow \quad \downarrow \\
\Delta \xrightarrow{\sigma} \Gamma
\end{array}
$$
Two ways to keep track of type dependencies ($\Gamma.A \rightarrow \Gamma$):
Two ways to keep track of type dependencies ($\Gamma.A \rightarrow \Gamma$):

Contextual categories have an \mathbb{N}-grading on objects

\[
\text{Ob}_0 \mathcal{C} \leftarrow \cdots \leftarrow \text{Ob}_n \mathcal{C} \leftarrow^{p_n} \text{Ob}_{n+1} \mathcal{C} \leftarrow \cdots
\]

such that $p_n(\Gamma.A) = \Gamma$ (where $\Gamma \in \text{Ob}_n \mathcal{C}$).
Two ways to keep track of type dependencies ($\Gamma.A \to \Gamma$):

Contextual categories have an \mathbb{N}-grading on objects

$$\text{Ob}_0\mathcal{C} \leftarrow \cdots \leftarrow \text{Ob}_n\mathcal{C} \leftarrow^{p_n} \text{Ob}_{n+1}\mathcal{C} \leftarrow \cdots$$

such that $p_n(\Gamma.A) = \Gamma$ (where $\Gamma \in \text{Ob}_n\mathcal{C}$).

Categories with Attributes have a functor

$$\text{Ty} : \mathcal{C}^{\text{op}} \to \text{Set}$$

such that $A \in \text{Ty}(\Gamma)$.

Encoding type dependencies

Two ways to keep track of type dependencies ($\Gamma.A \to \Gamma$):

Contextual categories have an \mathbb{N}-grading on objects

$$\text{Ob}_0\mathcal{C} \leftarrow \cdots \leftarrow \text{Ob}_n\mathcal{C} \leftarrow^{p_n} \text{Ob}_{n+1}\mathcal{C} \leftarrow \cdots$$

such that $p_n(\Gamma.A) = \Gamma$ (where $\Gamma \in \text{Ob}_n\mathcal{C}$).

Categories with Attributes have a functor

$$\text{Ty} : \mathcal{C}^{\text{op}} \to \text{Set}$$

such that $A \in \text{Ty}(\Gamma)$.

Encoding type dependencies

Two ways to keep track of type dependencies ($\Gamma.A \to \Gamma$):

Contextual categories have an \mathbb{N}-grading on objects

$$\text{Ob}_0\mathcal{C} \leftarrow \cdots \leftarrow \text{Ob}_n\mathcal{C} \leftarrow^{p_n} \text{Ob}_{n+1}\mathcal{C} \leftarrow \cdots$$

such that $p_n(\Gamma.A) = \Gamma$ (where $\Gamma \in \text{Ob}_n\mathcal{C}$).

Categories with Attributes have a functor

$$\text{Ty} : \mathcal{C}^{\text{op}} \to \text{Set}$$

such that $A \in \text{Ty}(\Gamma)$.

Encoding type dependencies

Two ways to keep track of type dependencies ($\Gamma.A \to \Gamma$):

Contextual categories have an \mathbb{N}-grading on objects

$$\text{Ob}_0\mathcal{C} \leftarrow \cdots \leftarrow \text{Ob}_n\mathcal{C} \leftarrow^{p_n} \text{Ob}_{n+1}\mathcal{C} \leftarrow \cdots$$

such that $p_n(\Gamma.A) = \Gamma$ (where $\Gamma \in \text{Ob}_n\mathcal{C}$).

Categories with Attributes have a functor

$$\text{Ty} : \mathcal{C}^{\text{op}} \to \text{Set}$$

such that $A \in \text{Ty}(\Gamma)$.

Encoding type dependencies

Two ways to keep track of type dependencies ($\Gamma.A \to \Gamma$):

Contextual categories have an \mathbb{N}-grading on objects

$$\text{Ob}_0\mathcal{C} \leftarrow \cdots \leftarrow \text{Ob}_n\mathcal{C} \leftarrow^{p_n} \text{Ob}_{n+1}\mathcal{C} \leftarrow \cdots$$

such that $p_n(\Gamma.A) = \Gamma$ (where $\Gamma \in \text{Ob}_n\mathcal{C}$).

Categories with Attributes have a functor

$$\text{Ty} : \mathcal{C}^{\text{op}} \to \text{Set}$$

such that $A \in \text{Ty}(\Gamma)$.

Encoding type dependencies

Two ways to keep track of type dependencies ($\Gamma.A \to \Gamma$):

Contextual categories have an \mathbb{N}-grading on objects

$$\text{Ob}_0\mathcal{C} \leftarrow \cdots \leftarrow \text{Ob}_n\mathcal{C} \leftarrow^{p_n} \text{Ob}_{n+1}\mathcal{C} \leftarrow \cdots$$

such that $p_n(\Gamma.A) = \Gamma$ (where $\Gamma \in \text{Ob}_n\mathcal{C}$).

Categories with Attributes have a functor

$$\text{Ty} : \mathcal{C}^{\text{op}} \to \text{Set}$$

such that $A \in \text{Ty}(\Gamma)$.
Homotopy-theoretic models

Ctx \rightarrow CwA \rightarrow Comp \leftarrow Trb
Tribes are categories with a distinguished class of maps called fibrations, such that pullbacks against exist.
Tribes are categories with a distinguished class of maps \rightarrow called fibrations, such that pullbacks against \rightarrow exist.

Fibrations determine path objects, which can then be used to define homotopies $f \sim g$ and homotopy equivalences $X \simto Y$.
Tribes are categories with a distinguished class of maps \rightarrow called fibrations, such that pullbacks against \rightarrow exist.

Fibrations determine **path objects**, which can then be used to define homotopies $f \sim g$ and homotopy equivalences $X \simto Y$.

Tribes are categories with weak equivs. $:= \text{homotopy equivs}$.
Contextual categories are tribes:

<table>
<thead>
<tr>
<th></th>
<th>Contextual categories</th>
<th>Tribes</th>
</tr>
</thead>
<tbody>
<tr>
<td>\to</td>
<td>Canonical projections</td>
<td>Fibrations</td>
</tr>
<tr>
<td>Σ</td>
<td>Dependent sum</td>
<td>Composition</td>
</tr>
<tr>
<td>Id</td>
<td>Identity types</td>
<td>Path objects</td>
</tr>
</tbody>
</table>
Contextual categories vs. Tribes

Contextual categories are tribes:

<table>
<thead>
<tr>
<th></th>
<th>Contextual categories</th>
<th>Tribes</th>
</tr>
</thead>
<tbody>
<tr>
<td>\rightarrow</td>
<td>Canonical projections</td>
<td>Fibrations</td>
</tr>
<tr>
<td>Σ</td>
<td>Dependent sum</td>
<td>Composition</td>
</tr>
<tr>
<td>Id</td>
<td>Identity types</td>
<td>Path objects</td>
</tr>
</tbody>
</table>

However, tribes are not contextual categories:

- no functorial choice of pullbacks
- no pullback-stable choice of Id- and Σ-types.
Comprehension categories encode pullbacks against \rightarrow via a Grothendieck fibration $P : \mathcal{T} \rightarrow \mathcal{C}$.

Logical Framework (LF):
- Existence of categorical dependent exponentials.
- Satisfied if \mathcal{C} has Π-types or is locally cartesian closed.
Comprehension categories encode pullbacks against \to via a Grothendieck fibration $P: \mathcal{T} \to \mathcal{C}$.

They provide the right setting for strictifying these pullbacks:

Theorem (Lumsdaine-Warren 2015)

Let \mathcal{C} be a full comprehension category satisfying LF, with weakly stable Id and Σ-types.

There is an equivalent full split comprehension category \mathcal{C}_1 with strictly stable Id and Σ-types.
Comprehension categories encode pullbacks against via a Grothendieck fibration \(P: \mathcal{T} \to \mathcal{C} \).

They provide the right setting for strictifying these pullbacks:

Theorem (Lumsdaine-Warren 2015)

Let \(\mathcal{C} \) be a full comprehension category satisfying LF, with weakly stable \(\text{Id} \) and \(\Sigma \)-types. There is an equivalent full split comprehension category \(\mathcal{C}_1 \) with strictly stable \(\text{Id} \) and \(\Sigma \)-types.
Comprehension categories encode pullbacks against \(\rightarrow \) via a Grothendieck fibration \(P : T \rightarrow C \).

They provide the right setting for strictifying these pullbacks:

Theorem (Lumsdaine-Warren 2015)

Let \(C \) be a full comprehension category satisfying LF, with weakly stable \(\text{Id} \) and \(\Sigma \)-types. ▼ ▼ ▼ tribes

There is an equivalent full split comprehension category \(C_1 \) with strictly stable \(\text{Id} \) and \(\Sigma \)-types. ▼ ▼ ▼ contextual cats/CwAs

Logical Framework (LF):
- Existence of categorical dependent exponentials.
- Satisfied if \(C \) has \(\Pi \)-types or is locally cartesian closed.
Need units and counits to be natural weak equivalences.
Need units and counits to be natural weak equivalences.
Weak equivalences within each model
Given Id-types/path objects, we may define homotopies $f \sim g$ and homotopy equivalences $X \rightsquigarrow Y$.

Note: LE assumes homotopies factor through chosen Id-types, and requires knowledge of ‘immediate’ type-dependencies.
Given Id-types/path objects, we may define homotopies \(f \sim g \) and homotopy equivalences \(X \simto Y \).

\(F : C \rightarrow D \) is a **logical equivalence** (LE) if types and terms in \(D \) have preimages in \(C \), up to homotopy (*weak type* and *term lifting*).

\(F : C \rightarrow D \) is a **homotopy-theoretic equivalence** (HE) if it induces an equivalence \(\text{Ho} C \cong \text{Ho} D \).
Given Id-types/path objects, we may define homotopies \(f \sim g \) and homotopy equivalences \(X \leadsto Y \).

\[F : C \to D \] is a **logical equivalence** (LE) if types and terms in \(D \) have preimages in \(C \), up to homotopy (weak type and term lifting).

\[F : C \to D \] is a **homotopy-theoretic equivalence** (HE) if it induces an equivalence \(\text{Ho} \, C \cong \text{Ho} \, D \).

Note: LE assumes homotopies factor through chosen Id-types, and requires knowledge of ‘immediate’ type-dependencies.
We may generalize LE in two ways, with a view towards HE:

- Require homotopies/homotopy equivalences to factor through some Id-type (rather than a chosen Id-type)
- Require weak context and section lifting
We may generalize LE in two ways, with a view towards HE:

- Require homotopies/homotopy equivalences to factor through *some* Id-type (rather than a chosen Id-type)
- Require weak *context* and *section* lifting

<table>
<thead>
<tr>
<th></th>
<th>Type/term lifting</th>
<th>Context/section lifting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chosen Id-type</td>
<td>LE</td>
<td>CE</td>
</tr>
<tr>
<td>Some Id-type</td>
<td>wLE</td>
<td>wCE</td>
</tr>
</tbody>
</table>
(Assume $\text{Id}, \Sigma, \text{LF}$)
Thank you!

Questions/comments?
- **Contexts** are finite lists \([x_1 : A_1, \ldots, x_n : A_n]\), up to definitional equality and renaming of variables

- **Substitutions** \([x_1 : A_1, \ldots, x_n : A_n] \xrightarrow{f} [y_1 : B_1, \ldots, y_m : B_m]\) are sequences

\[
\begin{align*}
x_1 : A_1, \ldots, x_n : A_n \vdash f_1 : B_1 \\
\vdots \\
x_1 : A_1, \ldots, x_n : A_n \vdash f_m : B_m
\end{align*}
\]
Definition (Cartmell 1978)

A **contextual category** is a category \mathcal{C} with:

1. A grading on objects $\text{Ob}\, \mathcal{C} = \biguplus_{n \in \mathbb{N}} \text{Ob}_n\mathcal{C}$
2. A terminal object 1 which is the unique object in $\text{Ob}_0\mathcal{C}$
3. Maps $\text{pt}: \text{Ob}_{n+1}\mathcal{C} \to \text{Ob}_n\mathcal{C}$
4. *Canonical projections* $A \to \text{pt}A$
5. A functorial choice of pullbacks against canonical projections:

\[
\begin{align*}
A[\sigma] \xrightarrow{\sigma.A} A \\
\downarrow \quad \quad \quad \downarrow \\
\Delta \xrightarrow{\sigma} \text{pt}A
\end{align*}
\]

A **category with attributes** is a category \mathcal{C} with:

1. A terminal object 1
2. A functor $\text{Ty}: \mathcal{C}^{\text{op}} \to \text{Set}$
3. For each $A \in \text{Ty}(\Gamma)$, an object $\Gamma.A \in \mathcal{C}$ and map $\Gamma.A \to \Gamma$
4. A functorial choice of a map $\sigma.A$, for each $A \in \text{Ty}(\Gamma)$ and $\Delta \xrightarrow{\sigma} \Gamma$, fitting into a pullback square:

\[
\Delta.(\text{Ty}f)(A) \xrightarrow{\sigma.A} \Gamma.A
\]

\[
\Delta \xrightarrow{\sigma} \Gamma
\]
Definition (Joyal 2014, Shulman 2015)

A tribe is a category \mathcal{C} with a subcategory \mathcal{F} of fibrations (\rightarrow) containing all isomorphisms, such that

1. \mathcal{C} has a terminal object, and all objects are fibrant
2. Pullbacks along fibrations exist, and fibrations are stable under pullback
3. Anodyne maps ($\sim \rightarrow$) are stable under pullback along fibrations
4. Every map factors as $\cdot \sim \rightarrow \cdot \rightarrow$.

Anodyne maps are those with the left lifting property against fibrations.

André Joyal. ‘Categorical homotopy type theory’. In: Slides from a talk at MIT dated 17 (2014).

Paths and homotopies within tribes

Definition

A **path object** for $Y \in \mathcal{C}$ is a factorization of the diagonal:

$$
\Delta_Y = (Y \sim P_Y \to Y \times Y)
$$

Two maps $f, g : X \to Y$ are **homotopic** ($f \sim g$) if there is a factorization of (f, g) through P_Y:

$$(f, g) = (X \xrightarrow{H} P_Y \to Y \times Y)$$

A map $f : X \to Y$ is a **homotopy equivalence** ($f : X \sim Y$) if there is a map $g : Y \to X$ such that $gf \sim 1_X$ and $fg \sim 1_Y$.

$\hat{\text{every\ tribe}}$ is a category with weak equivalences, where $\text{Weak\ equivalences} \equiv \text{Homotopy\ equivalences}$
Paths and homotopies within tribes

Definition

A **path object** for $Y \in \mathcal{C}$ is a factorization of the diagonal:

$$\Delta_Y = (Y \xrightarrow{\sim} PY \xrightarrow{\sim} Y \times Y)$$

Two maps $f, g : X \to Y$ are **homotopic** ($f \sim g$) if there is a factorization of (f, g) through PY:

$$(f, g) = (X \xrightarrow{H} PY \xrightarrow{\sim} Y \times Y)$$

A map $f : X \to Y$ is a **homotopy equivalence** ($f : X \xrightarrow{\sim} Y$) if there is a map $g : Y \to X$ such that $gf \sim 1_X$ and $fg \sim 1_Y$.

Every tribe is a category with weak equivalences, where

Weak equivalences := Homotopy equivalences
A **comprehension category** consists of a Grothendieck fibration \(T \xrightarrow{P} C \) and a **comprehension functor** \(\chi : T \to \text{Arr} C \) such that the diagram
\[
\begin{array}{ccc}
T & \xrightarrow{\chi} & \text{Arr} C \\
\downarrow P & & \downarrow \text{cod} \\
C & &
\end{array}
\]
commutes, and \(\chi \) sends cartesian maps to pullback squares.
A comprehension category is **split** if \(P \) is a split fibration, and **full** if \(\chi \) is fully faithful.

Categories with attributes are full split comprehension categories.

Let \mathcal{C} be a model of type theory, with Id-types which give rise to homotopies $f \sim g$.
Let \mathcal{C} be a model of type theory, with Id-types which give rise to homotopies $f \sim g$.

Definition

The **homotopy category** of \mathcal{C} is the category $\text{Ho}\mathcal{C}$ with the same objects, and homotopy classes of maps.

Definition

A functor of models $F: \mathcal{C} \to \mathcal{D}$ is a **homotopy equivalence** (HE) if it induces an equivalences of categories $\text{Ho}\mathcal{C} \cong \text{Ho}\mathcal{D}$.
Logical equivalence

Definition

A functor $F : C \rightarrow D$ is a **logical equivalence** (LE) if it satisfies:

1. **Weak type lifting**: For all $\Gamma \in C$, $A \in \text{Ty}(F \Gamma)$, there exists $\tilde{A} \in \text{Ty}(\Gamma)$ and $F \tilde{A} \sim A$ over $F \Gamma$.

 ![Diagram of weak type lifting]

2. **Weak term lifting**: For all $\Gamma \in C$, $A \in \text{Ty}(\Gamma)$ and $a \in \text{Tm}(FA)$, there exists a term $\tilde{a} \in \text{Tm}(A)$ such that $F \tilde{a} \sim a$.

 ![Diagram of weak term lifting]
A functor $F : \mathcal{C} \to \mathcal{D}$ is a **logical equivalence** (LE) if it satisfies:

1. **weak type lifting**: For all $\Gamma \in \mathcal{C}$, $A \in \text{Ty}(F\Gamma)$, there exists $\tilde{A} \in \text{Ty}(\Gamma)$ and $F\tilde{A} \stackrel{\sim}{\rightarrow} A$ over $F\Gamma$.

 ![Diagram of weak type lifting](https://via.placeholder.com/150)

2. **weak term lifting**: For all $\Gamma \in \mathcal{C}$, $A \in \text{Ty}(\Gamma)$ and $a \in \text{Tm}(FA)$, there exists a term $\tilde{a} \in \text{Tm}(A)$ such that $F\tilde{a} \sim a$.

 ![Diagram of weak term lifting](https://via.placeholder.com/150)
A functor $F : C \to D$ is a **logical equivalence** (LE) if it satisfies:

1. **weak type lifting**: For all $\Gamma \in C$, $A \in \text{Ty}(F \Gamma)$, there exists $\tilde{A} \in \text{Ty}(\Gamma)$ and $F\tilde{A} \sim A$ over $F \Gamma$.

 ![Diagram for weak type lifting]

2. **weak term lifting**: For all $\Gamma \in C$, $A \in \text{Ty}(\Gamma)$ and $a \in \text{Tm}(FA)$, there exists a term $\tilde{a} \in \text{Tm}(A)$ such that $F\tilde{a} \sim a$.

 ![Diagram for weak term lifting]
A functor $F : \mathcal{C} \to \mathcal{D}$ is a **logical equivalence** (LE) if it satisfies:

1. **weak type lifting**: For all $\Gamma \in \mathcal{C}$, $A \in \text{Ty}(F \Gamma)$, there exists $\tilde{A} \in \text{Ty}(\Gamma)$ and $F \tilde{A} \sim A$ over $F \Gamma$.

\[
\begin{array}{c}
\tilde{A} \\
\downarrow \\
\Gamma
\end{array} \quad \Rightarrow
\begin{array}{c}
F \tilde{A} \\
\downarrow \\
F \Gamma
\end{array} \quad \sim
\begin{array}{c}
A \\
\downarrow \\
\Gamma
\end{array}
\]

2. **weak term lifting**: For all $\Gamma \in \mathcal{C}$, $A \in \text{Ty}(\Gamma)$ and $a \in \text{Tm}(FA)$, there exists a term $\tilde{a} \in \text{Tm}(A)$ such that $F \tilde{a} \sim a$.

\[
\begin{array}{c}
A \\
\downarrow \\
\Gamma
\end{array} \quad \Rightarrow
\begin{array}{c}
FA \\
\downarrow \\
F \Gamma
\end{array}
\]
A functor $F : \mathcal{C} \to \mathcal{D}$ is a **logical equivalence** (LE) if it satisfies:

1. **weak type lifting**: For all $\Gamma \in \mathcal{C}$, $A \in \text{Ty}(F\Gamma)$, there exists $\tilde{A} \in \text{Ty}(\Gamma)$ and $F\tilde{A} \sim A$ over $F\Gamma$.

 ![Diagram of weak type lifting](image)

2. **weak term lifting**: For all $\Gamma \in \mathcal{C}$, $A \in \text{Ty}(\Gamma)$ and $a \in \text{Tm}(FA)$, there exists a term $\tilde{a} \in \text{Tm}(A)$ such that $F\tilde{a} \sim a$.

 ![Diagram of weak term lifting](image)
A functor $F : \mathcal{C} \to \mathcal{D}$ is a **logical equivalence** (LE) if it satisfies:

1. **Weak type lifting**: For all $\Gamma \in \mathcal{C}$, $A \in \text{Ty}(F\Gamma)$, there exists $\tilde{A} \in \text{Ty}(\Gamma)$ and $F\tilde{A} \sim A$ over $F\Gamma$.

$$
\begin{array}{c}
\tilde{A} \\
\downarrow \\
\Gamma
\end{array} \quad \Rightarrow \quad
\begin{array}{c}
F\tilde{A} \\
\downarrow \\
F\Gamma
\end{array} \quad \sim \quad
\begin{array}{c}
A \\
\uparrow \\
a
\end{array}
$$

2. **Weak term lifting**: For all $\Gamma \in \mathcal{C}$, $A \in \text{Ty}(\Gamma)$ and $a \in \text{Tm}(FA)$, there exists a term $\tilde{a} \in \text{Tm}(A)$ such that $F\tilde{a} \sim a$.

$$
\begin{array}{c}
A \\
\uparrow \\
\tilde{a}
\end{array} \quad \Rightarrow \quad
\begin{array}{c}
FA \\
\downarrow \\
a
\end{array}
\begin{array}{c}
\Gamma \\
\uparrow \\
\downarrow \\
\tilde{a} \\
\downarrow \\
\Gamma
\end{array} \quad \sim \quad
\begin{array}{c}
F\Gamma
\end{array}
$$
A functor $F : \mathcal{C} \to \mathcal{D}$ is a logical equivalence (LE) if it satisfies:

1. **weak type lifting**: For all $\Gamma \in \mathcal{C}$, $A \in \text{Ty}(F \Gamma)$, there exists $\tilde{A} \in \text{Ty}(\Gamma)$ and $F \tilde{A} \sim A$ over $F \Gamma$.

 ![Diagram of weak type lifting]

2. **weak term lifting**: For all $\Gamma \in \mathcal{C}$, $A \in \text{Ty}(\Gamma)$ and $a \in \text{Tm}(FA)$, there exists a term $\tilde{a} \in \text{Tm}(A)$ such that $F \tilde{a} \sim a$.

 ![Diagram of weak term lifting]
Logical equivalence

Definition

A functor $F: \mathcal{C} \to \mathcal{D}$ is a **logical equivalence** (LE) if it satisfies:

1. **weak type lifting**: For all $\Gamma \in \mathcal{C}$, $A \in \text{Ty}(F\Gamma)$, there exists $\tilde{A} \in \text{Ty}(\Gamma)$ and $F\tilde{A} \sim A$ over $F\Gamma$.

\[
\begin{array}{ccc}
\tilde{A} & \longrightarrow & F\tilde{A} \\
\downarrow & & \downarrow \sim \\
\Gamma & \longrightarrow & F\Gamma
\end{array}
\]

2. **weak term lifting**: For all $\Gamma \in \mathcal{C}$, $A \in \text{Ty}(\Gamma)$ and $a \in \text{Tm}(FA)$, there exists a term $\tilde{a} \in \text{Tm}(A)$ such that $F\tilde{a} \sim a$.

\[
\begin{array}{ccc}
A & \longrightarrow & FA \\
\tilde{a} & \uparrow & \sim \\
\Gamma & \longrightarrow & F\Gamma
\end{array}
\]